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PREFACE. 

In the present treatise I have attempted to give an exposition 

of the Theory of Determinants and their more important appli¬ 

cations. In every case where it was possible I have consulted 

the original works and memoirs on the subject; a list of those 

I have been able to see is appended as it may be useful to others 

pursuing the same line of study. At one time I hoped to make 

this list exhaustive, supplementing my own researches from the 

literary notices in foreign mathematical journals, but even with 

this aid I found that it would be necessarily incomplete. In 

consequence of this the list has been restricted to those memoirs 

which I have seen, the leading results of which are incorporated 

either in the body of the text or in the examples. 

The principal novelty of the treatise lies in the systematic 

use of Grassmann’s alternate units, by means of which the study 

of determinants is, I believe, much simplified. 

I have to thank my friend Mr Jas. Barnard, M.A. of St John s 

College and Mathematical Master at the Proprietary School, 

Blackheath, for the care he has bestowed on correcting the proofs 

and for many valuable suggestions. 

R. F. SCOTT. 
Feh. 1880. 

S. D. 
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THEOKY OF DETEEMINANTS. 

CHAPTER I. 

Introduction. 

1. The object of the theory of Determinants is to obtain 

compendious and simple methods of dealing with large numbers 

of quantities. In the words of Professor Sylvester, ‘^It is an 

algebra upon an algebra; a calculus which enables us to combine 

and foretell the results of algebraical operations in the same way 

as algebra itself enables us to dispense with the performance of 

the special operations of arithmetic.” 

It will be found that the advantages and success of the 

method depend in great measure upon the notations which have 

been employed. 

2. To indicate concisely the quantities discussed different 

notations have been used. The numbers belonging to the same 

class being denoted by the same letter, the different numbers of 

that class are distinguished by affixing numbers or letters, e.g. 

Uj , , (7g , . . . , 

^/> .> 

denotes such a class of numbers. Each letter with its affix is 

called an element; the affixed number from its position is usually 

called the suffix of the element. 

s. D. 1 
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We have frequently to deal with a series of such classes, each 

containing the same number of elements; these when written 

one under the other in rows form a rectangular array, the 

class being denoted by the letter while the suffix indicates the 

position of the element in the class. 

• E.g. a„ a,. 

K, K h. 

^8. 

3. In the theory of determinants we have frequently to deal 

with several such arrays, and it will he found that the most con¬ 

venient notation is the following: 

®11> ®12> 

^21^ ^22» ^23> 

where there are m horizontal and p vertical rows of elements. 

Then is that element in the array of a’s which is situated 

at the intersection of the horizontal and vertical rows. 

The first suffix tells us the horizontal and the second suffix 

the vertical row in which the element stands. 

In the present work these horizontal and vertical rows will he 

called rows and columns; therefore stands in the row and 

column. 

Occasionally when we are dealing with a single array the 

letter is omitted, and instead of aj^ we write {ks) only. Such 

a notation is called an umbral notation, (ks) being not a quantity, 

but, as it were, the shadow of one. 

4. To give an example of the use of this notation take two 

groups of points in space, the first consisting of m and the second 

of p points. Then we may denote the distance between the k^^ 

point of the first group and the s^ point of the second by c?*, on 
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(ks) simply, and the whole set of lines joining the points of the 

two groups would he denoted by the array in § 3. At the same 

time the meaning of any selected element d^j is perceived at once. 

5. If we have any n elements ... we may call 

^2’ * • • 

where the elements are arranged according to the magnitude 

of the numbers forming the suffixes, the natural or original 

order of the letters. Any other order is called a permutation 

of the elements. One element is said to he higher than another 

when it has the greater suffix. When in any permutation an 

element with a higher suffix precedes another with a lower we 

have an inversion. 

Thus the permutation ag, of four letters, contains the 

following four inversions, 

^4^2’ ^4^3 > ^2^1’ 

where we compare each element with all that follow it. 

Following Cramer it is usual to divide the permutations of 

a given set of elements into two classes; the first class contains 

those permutations which have an even number of inversions, the 

second those which have an odd number. 

6. By permutating the elements we obtain all 

possible ways in which they can he written. The same result is 

arrived at by writing down all the permutations of the suffixes 

1, 2, ...n and then putting a’s above them. 

By repeated interchange of two suffixes we can get every 

permutation of the given elements from their original order. 

For if we start with two suffixes 1, 2, they have but two 

arrangements, 
1, 2, 2, 1, 

of which the second is got from the first by a simple interchange. 

Taking three elements 1, 2, 3 out of these we can select the duad 

3, whose permutations are 2, 3 ; 3, 2. Prefixing 1 to each of 

these we get 1, 2, 3; 1, 3, 2, which are two permutations of the 

1—2 
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given elements. Proceeding in like manner with the other duads 

1, 3; 1, 2, we get the six arrangements of three figures 

12 3, 13 2, 231 

2 13, 3 12, 3 2 1. 

Next take four numbers 1, 2, 3, 4. We get four triplets by leaving 

out one number, viz. 

1 2 3, 1 2 4, 1 3 4, 2 3 4. 

For each triplet we can write down six arrangements by the rule 

just given for three numbers, then adding on the missing number 

we get twenty-four arrangements of four numbers, viz. 

1234 1243 1342 2341 

2134 2143 3142 3 2 41 

1324 1423 1432 2431 

3124 4123 4132 4231 

2314 2413 3412 3421 

3214 4213 4312 432 1. 

And so we could go on to write down the arrangements of any set 

of elements. 

The number of arrangements of n letters is 1.2.3...7ior n\ 
an even number. 

7. If in a given permutation two elements be interchanged 

while all the others remain unaltered in position, the two resulting 

permutations belong to different classes. This will be proved if 

we can shew that the difference between the number of inversions 

in the two permutations is an odd number. 

We can represent any permutation of a group of elements by 

A d B e G.(1), 

where d and e are the two elements to be presently interchanged, 

A the group of elements which precede d, B the group between 

d and e, and G the group which follows e. The permutation we 
obtain is 

A e B d G. (2). 
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The number of inversions in the two permutations (1) and (2) due 

to the elements contained in the groups A, B and G is in each 

case the same. And since the elements of A precede d and e in 

both permutations we get no new inversions in (2) from these; the 

elements of G follow both d and e, and therefore give rise to no 

new inversions. We have therefore only to consider the changes 

in the two permutations 

d B e and e B d.(3). 

Suppose that e is higher than d; let B contain b elements of 

which are higher than d and b^ higher than e. Then in the 

permutation d B e ^e have, independently of the inversions con¬ 

tained in B itself, b — \ + b^ inversions, because there are h — b^ 
elements lower than d and b^ higher than e. 

In eB d we have b — b^ inversions on account of e, b^ on account 

of dj and one because e is higher than d\ thus, without counting 

the inversions in B, we have b — b^+b^+1. The difference between 

the number of inversions in the permutations (3), and therefore 

in (1) and (2), is thus 

b — b^ + bj^ + 1 — (b — bj^ + b^ =2(bj^ — b^ 4-1> 

which is an odd number, shewing that the permutations belong to 

different classes. 

8. The same result may be arrived at as follows. If there be 

n quantities whose natural order is 

’ * * * 

and if in any arrangement we subtract each suffix from all that 

follow it and multiply these differences together, we shall have a 

product whose sign will depend on the number of inversions in 

the given arrangement, the sign being positive if the number of 

inversions is even and negative if the number of inversions is odd. 

If then i, h be any two suffixes chosen arbitrarily which are to be 

interchanged, i preceding k in the given arrangement, the product 

of the differences will consist of four parts. 

(i) The factor k — i. 

(ii) and (iii) A set of factors such as r — k, and r — 

where r is some number of the series l...n excluding i and k. 
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(iv) A set of factors such as r — s, where r, s are any two 

numbers of the series 1, 2...n excluding i and k. 

Then for the given arrangement the product of the differences 

will be 
+ {k — i)n (r — i) {r — k)Il(r — 5), 

where the symbol IT stands for “the product of all such factors.” 

If now we interchange i and k, the signs of all factors such as 

(r — k) {r — i), (r — s) remain unchanged, while k — i changes sign. 

Thus on interchanging two elements the product of the differ¬ 

ences changes sign, i.e. by interchanging two suffixes we have 

introduced an odd number of negative factors and therefore of 

inversions, hence the two arrangements considered belong to dif¬ 

ferent classes. 

.9. If in a series of elements each is replaced by the one 

which follows it, and the last by the first, we are said to have got 

a cyclical permutation of the given arrangement. If the system 

of elements 

®15 ^2. 

be considered as forming an endless band, if we cut this band 

between and we have the natural order, cutting it between 

and we have a cyclical permutation of the first order, and so 

on. 

Such a cyclical permutation is equivalent to w — 1 simple 

interchanges, viz. we move from the first to the last place by 

interchanging the first and second elements, then the second and 

third, and so on, in all w — 1 simple interchanges. Thus a cyclical 

permutation of a given arrangement belongs to the same or 

opposite class as the given one according as the number of ele¬ 

ments is odd or even. 

10. Every permutation of a given set of elements may be 

considered as derived from a fixed permutation by means of cyclical 

permutations of groups of the elements. 

This is best illustrated by an example. Let the suffixes of two 

permutations of nine elements be 

7, 6, 3, 2, 1, 4, 8, 5, 9 

8, 7, 9, 5, 1, 6, 4, 3, 2 
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Here the second permutation is obtained by replacing in the first 

7 by 8, 8 by 4, 4 by 6 and 6 by 7, which completes a cycle. Then 

3 is replaced by 9, 9 by 2, 2 by 5 and 5 by 3, which completes 

the second cycle. Lastly, 1 forms a cycle by itself. 

11. If elements which remain unchanged like 1 in the 

preceding example be considered as forming a cycle of one letter, 

we may state the following theorem: Two permutations belong 

to the same or different classes, according as the difference be¬ 

tween the number of elements and the number of groups by 

whose cyclical interchange one permutation is got from the other, 

is even or odd. 

For if there be n elements altogether, and p cycles of 

Wg... Wp letters, the cyclical interchanges are equivalent to 

(w,-l) 4-(w,-l) + ...+(%-l) = n^ + n^...+n^-p 

= n—p 

simple interchanges, which proves the theorem. 

In the example in Art. 10, n = 9, p = 3, and thus they belong 

to the same class. 

12. If the number of rows and columns in an array be the 

same, we have a square array. Let such an array, containing 

elements, be 

.®nn* 

The diagonal of elements will be called the leading 

or principal diagonal. 

A certain function, which is called a determinant, can be 

formed with the elements of this array as follows : From the array 

choose n different elements such that there is one and only one 

element from each row and column, multiply these elements to¬ 

gether, the product will be a term of the determinant of n letters. 

For example, the set of elements 
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situated in the principal diagonal of the square array, form a term 

of the determinant; this will be called the leading term, and to 

it we assign the positive sign. 

The sign of any other term 

is determined as follows. From the mode in which the elements 

were selected, it follows that 

/, h...s, and g, k ...t 

are each of them permutations of 1, 2 ...n. Let them contain 

p and q inversions respectively, then the sign of the term 

is (— 1)^^. The sum of all the possible terms with their proper 

signs is the determinant of the array. 

More simple rules may be given for determining the sign of 

any term. If we interchange any two elements a,^ and a.j the 

term does not change its sign. For this interchange is equivalent 

to the interchange of i with h and j with k. By these two in¬ 

terchanges we increase both p and q by an odd number, and hence 

the sign of the term is unaltered. It is therefore usual to give 

to one series of sujffixes their natural order, when one of the two 

numbers p or is zero, and the sign of the term of the deter¬ 

minant depends solely on the number of inversions in the other 

series, and is the same whether the first or second series of suffixes 

retains its natural order. 

It is thus clear that all the terms of the determinant will be 

obtained from the leading term 

by keeping the first suffixes fixed in their natural order, and 

writing for the second suffixes in succession all possible permuta¬ 

tions of the elements 1, 2 ... n, giving to the product of the 

elements the positive or negative sign according as the number 

of inversions is even or odd. 

Such a determinant is said to be of the degree, since each 

term is the product of n elements. It has nl terms in all, since 

this is the number of permutations of the second suffixes, each 
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of which gives a term of the determinant. One half of these 

terms have the positive, the other half the negative sign. 

13. Various notations are employed for the determinant of a 

system of elements. Cauchy and Jacobi denoted it by drawing 

two vertical lines at the sides of the array, or by writing + before 

the leading term and prefixing a summation sign, 

X i ®22 * * * * 

Sylvester uses the umbral notation 

1, 2.n, 
1, 2.n. 

If the determinant be written in the form 

^1, 2/1, 

3^2 > “^2 • • • 

we may denote it by 

1 Vi, ••• I (t = l, 2 ... n), 

meaning by this that i is to take the different values 1, 2 ... in 

succession. Lastly, the determinant with double suffixes may 

be denoted by 

I “« 1 (», *=!, 2 ... n), 

the bracket at the side telling us what values the suffixes i and 

k take. 

This bracket is frequently omitted in practice. 

This notation is, I believe, due to Prof. H. J. S. Smith, who 

employs it in his report on the theory of numbers, Brit Ass. Bep., 

1861, p. 504. 

14. From Art. 6 we know the permutations of a system of 

two, three, or four elements. These give us the determinants of 

degree two, three, and four, viz. 
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a„, «12 

^'21 » «22 

®11> ®12> ®13 

«21> ®22> «23 

®31> «32> «33 

®11®22^33 ®12®21®33 ®l3®21®32 

— ®ii®23®32 ®12®23®31 “ ®13®22®31» 

^2> ^2> ^2 

®3> ^3» ^3» ^3 

®4> ^4> ^4? ^4 

+ aj)^cA - «3^2<^1^4 “ ^Pi^A + ^Px^A 
+ «1 ^2^3 - «4^iC2^^3 - «2 Vl«^3 + ^P4^X^Z 

+ a})^c^d^ - a^c.d^ - afi^cA + (ip,<^z^^ 

+ a^^c^d^ - (f'Pz^xP^ - ^Pz^A + 

+ ^Pfz^X - «4V3^1 - ^PfA + ^Pz^A' 

A useful mnemonical rule for writing down the expansion of 

any determinant of the third order is the following, due to Sarrus. 

Let the determinant be 

«i, &„ c, 

a 2» 

«3> 

K <>2 ■ 

K Cs 

Alongside of this repeat the first and second columns in 

order 

«! c^ \ 
\ X X / 

«2 K ^2 «2 ^2’ 
/ X X \ 

«3 K ^3 «3 ^3 

and form the product of each set of three elements lying in lines 

parallel to the diagonals of the original square. Those which lie 

in lines descending from left to right have the positive, the others 

the negative sign. 

Thus the determinant is 

“ACs + 6,C2«8+C,“25» 

-cA«8-“iCA-Wa- 

In practice it is not necessary actually to repeat the columns, 

but only to imagine them repeated. 
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It is not difficult to devise similar rules for determinants 

of higher order than the third, but we shall obtain methods for 

reducing the expansion of a determinant to that of several deter¬ 

minants of lower order, and for reducing the order of a determi¬ 

nant, so that they are unnecessary. 

15. If we interchange rows and columns in the determinant 

of Art. 13, we get 

«21> • 

®12> «22> 

ttin, «2«>- ••««» 

This is the same as the original determinant with the suffixes 

of each element interchanged. Its expansion is then obtained 

from that of the original determinant by interchanging in each 

term the suffixes of each element. That is to say, in the term 

®ii* ^22 ••• ®nn we keep the second suffixes fixed in their natural 

order and write for the first suffixes all possible permutations of 

1, 2 ... n. But the reasoning of Art. 12 shews that each term in 

the new determinant has the same sign as the corresponding one 

in the original determinant. 

Thus a determinant remains unchanged in value when its 

rows and columns are interchanged. 

Alternate Numbers. 

IG. The magnitudes with which we deal in ordinary or 

arithmetical algebra are subject, as regards their addition and 

multiplication, to the following principal laws : 

(i) The associative law, which states that 

(a + &) + c = a + (& + c) = a + & + c, 

or that ab .c = a. be — abc. 

(ii) The commutative law, which states that 

a + 6 = 6 -f a, 

ab — ba. 
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(iii) The distributive law, which states that 

(6 + c) a = 5a + ca, 

a {b+ c) = ah + ac. 

The researches of modern algebraists have led them to con¬ 

sider quantities for which one or more of these laws ceases to hold, 

or for which one or more of these laws assumes a different form. 

Numbers, whether real or ideal, which follow the laws of 

arithmetical algebra will be called scalar quantities. 

. We shall find it useful to consider a class of numbers which 

have received the name of alternate numbers. These are deter¬ 

mined by means of a system of independent units given in sets 

like the co-ordinates of a point in space; such a set will be 

denoted by e^, e^, ... A number such as 

formed by adding the units together, each multiplied by a scalar, 

will be called an alternate number of the order. 

In combination with scalar quantities and with units of other 

sets these units follow the laws of ordinary algebra. In combina¬ 

tion with each other the units of a system follow the associative 

law and the commutative law as regards addition, but for multi¬ 

plication we have the new equation 

«A = -«A .(!)• 

As a consequence of which it follows at once that 

= 0.(2) 
for all values of i. 

17. If A = a^e^ + a/^ + ...+ a„e„, 

V2 + ---+5/„ 

be two alternate numbers of the order, we define their product 

as follows: 
AB = XaiC^hfij 

i 

— '^a^e^. 5,e,. 

= laj),e^e,. 
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Hence, by equations (1) and (2) of Art. IG, 

AB= (aji^ - aJ)J + (a,b, - a,6J e^e, + ... 

+ (“-A-“A-i) 
Thus clearly AB = — BA and A^ = 0, proving that alternate 

numbers have the same commutative law of multiplication as the 
units. 

This kind of multiplication, where AB = — BA, is called polar 

because the product AB has opposite properties at its two ends. 

18. If k be any scalar 

{A+kB)B = AB + kB^ = AB, 

so that the product of two alternate numbers is not altered if one 
be increased by a multiple of the other. 

If we have a product of more than two numbers 

ABC.L, 

it follows that for one of them, say G, we can write 

G + k^A k^BkfL, 

and the product will still remain unaltered. 

The alternate numbers belong to that class of algebraical 
magnitudes for which multiplication is a determinate, but division 
an indeterminate process. Viz. 

where k is an arbitrary scalar. 

The continued product ... of all the units of a set will in 
future be assumed to be unity. An explanation of this assumption 
will be given later on. 

19. If now we take a square array of elements such as that in 
Art. 12, we can form a system of n alternate numbers of the 
order by taking the elements of each row to form the coefficients 
of the units in the numbers. Let P be the product of all these 
numbers, so that 

^ + . . . + C^iA) iP'iA + ^22^2 + . . . + ttan^n)- • • 
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On multiplying out the factors on the right, 

P = e,. 

If , ^2... were ordinary scalars the product ... e, would be 

formed by taking n numbers from e^...e^^, and any number 

might be repeated 1, 2 ... n times; but since ... e^=0 if any 

two units are alike, it follows that j?, ^^... 5 is to be a permutation 

of 1, 2...?i. It follows at once from the law of multipbcation 

(equation 1, Art. 16) that 

where v is the number of inversions in the series ... e,. 

Thus P = ... e„ 2 (-1)” ... a„, 

but the term under the summation sign is a term of the deter¬ 

minant of the system of elements, with its proper sign. Thus 

■P= I««I «. 
= I <*« I • 

Hence the determinant of a system of elements is expressed as 

a product of n alternate numbers linear in these elements. From 

this it immediately follows that if all the elements of a row are 

multiplied by the same number the determinant is multiplied by 

that number, and if all the elements of a* row vanish the deter¬ 

minant vanishes. 

In future we shall write for a determinant of the order 

whichever of the forms 

njj, 
(Aj = + ... + is most convenient. The letters z, j 
taking all the values 1, 2 ... ?i. 

20. If the determinant is so constituted that the different 

factors of which it is composed do not contain all the units, its 

evaluation is frequently readily effected. 

For example, the determinant 

®11> 0, 0 ... ...0 

0 ... ...0 

®31> ®32> ®33 • • • ...0 

®«2> a„3... • • • ^nn 
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in which all the elements above the leading diagonal vanish 

reduces to the product ••• 

For it is equal to the product of the alternate numbers 

«2A+«22^2 

Vi + «32^2 + Vs 

+ ®«2^2 + ®n3^3 + ... + a„n6„. 
Since the first number contains , and only, all terms in the 

product of the remaining factors which contain disappear when 

multiplied by this factor, so that as far as we are concerned we 

may suppose ••• to vanish. The second number reduces 

to a^e^y and the product of the first two to We may 

shew in like manner that a^^y ... may vanish, and so on. Finally 

the product reduces to 

«u^i«^22^2 • • • ««n^« = «u«22 • • • «««• 

By an interchange of rows and columns it follows that the 

determinant for which all the elements below the leading diagonal o o 

vanish also reduces to its leading term. 

21. As another example let us consider the determinant 

0, cos (ttj + a^y cos (a, + ^3) 

cos (ttg + a^y 0, cos (ttg + 

cos (ttg + aj, cos (^3 + a^y 0 

of order n: the element in the row andy*^ column is cos (a^ + 

unless i =J, when it vanishes. 

Substitute for the cosines their exponential values and write 

Then D is the product of such factors as 



IG 

where 

Thus if 

we see that 

THEORY OF DETERMINANTS. 

«1 ^2 «n 

CtfE-]-= A^y 

[chap. I. 

(_ 2)” D = n (2 cos 2a,. e, - A^). 

Now observe that since the quantities -4, depend only on the 

two alternate numbers E and Fy the product of more than two of 

them must vanish. Hence expanding 

(“ 2)” jD= 2”cos 2a, cos 2a„... cos 2a„— 2” cos 2a,... cos 2a„2 ^ ' 12 n 1 ” 2 cos 2a« 

+ 2” cos 2a,... cos 2a^ S -f‘^ ’ ’ ’ 

Now ... e„., ^„ = ... e„., (a^E+ ^ 

4 cos 2a^ , cos 2a 

= —2 + “»’' = 2oos2a„. 

Thus 

or 

^ “n ^nr-V 

(-1)".D -1 ,1 S ~ 
COS 2a, cos 2a2... cos 2a^ cos 2a, cos 2a;fc' 

(- ir^H 
= (n-l) + 2 

COS 2a,... cos 2a„ 

where (f, k) are all duads derived from 1, 2 ... tz. 

sin^ (g, — g;,.) 

cos 2a, cos 2a*' 



CHAPTEK II. 

GENERAL PROPERTIES OF DETERMINANTS. 

1. If two columns or rows of a determinant be interchanged 

the resulting determinant is equal in value to the original, but of 

opposite sign. 

Let D = ... + + ... 4-+ ... + 

then, if If is the determinant got by interchanging the and 

columns, 

~ n + ... + + ... + + ... + ) 
but since in addition we follow the ordinary commutative law, D' 
is got from D by interchanging and e^. in the product on the 

right. This leaves the scalar factor unaltered but changes the 

sign of the product of the units, thus 

Interchanging two rows of a determinant, say the and is the 

same as interchanging the two factors and on tbe right: this 

is equivalent to an odd number of inversions, and hence by the 

rule of multiplication changes the sign of the product. 

2. If two rows or columns of a determinant be identical the 

determinant vanishes. For by the interchange of the two columns 

in question the determinant changes sign, but both columns being 

alike the determinant remains the same, thus 

D = — D or D =0. 

3. If each element of the row consist of the sum of two or 

more numbers the determinant splits up into the sum of two or 

2 S. D. 
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more determinants having for elements of the row the separate 

terms of the elements of the row of the given determinant. 

For if B= 

and (a„ + 6„) e, + (a,, + 6„) e, + ... + (a,„ + 6 J e„ 

= («««! + • • • + «(»«») + + • • • + 

= A', + Br, 

since A,... A,... A„ = A^... (,A\ + B,) ...A„ 

= A,...A\...A^ + A^...B,...A„ 

we have D = D^+ 

where and are determinants having for elements of the row 

in the place and 6^ respectively. 

Repeated applications of this reasoning shew that if the 

elements of the row consist each of the sum of p elements, then 

the original determinant can be resolved into the sum of p deter¬ 

minants having for their rows the terms of the elements of the 

row of the given determinant. 

The same theorem would apply if the elements of a column 

consisted of the sum of elements. In fact whenever a theorem 

applies to rows it applies equally to columns, as these can be inter¬ 

changed (i. 15). 

In future, when a theorem is stated with regard either to rows 

or columns, it is to be understood as applying also to the other. 

4. The value of a determinant is not altered if we add to the 

elements of any row the corresponding elements of another row, 

each multiplied by the same constant factor. 

For if we add to the elements of the row those of the k^^ row, 

each multiplied by p, the resulting determinant is 

=A^...A,...A^...A^, 

the latter product vanishing, since it contains two identical factors. 

For brevity the operation of adding corresponding elements of 

two rows is usually spoken of as adding the rows. 
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5. The theorem of the last article is of great importance in 

the reduction of determinants. The following are examples of 

its application: 

(i) If corresponding elements of two rows of a determinant 

have a constant ratio the determinant vanishes. For we have only 

to multiply the elements of one row by a proper factor and sub¬ 

tract them from the elements of the other when all the ele¬ 

ments in that row will vanish, and consequently the determinant 

vanishes. 

Of a similar nature are the two following theorems, whose proof 

presents no difficulty: 

(ii) If the ratio of the differences of corresponding elements 

in the and rows to the difference of corresponding ele¬ 

ments in the r*** and rows be constant, then the determinant 

vanishes. 

(iii) If from the corresponding elements of i + 1 rows we 

form the differences and from the corresponding elements of 

m -P1 rows the differences (the second set of rows being at 

least partially different from the first set); then, if the ratio of 

corresponding differences is constant, the determinant vanishes. 

(iv) Let D ... t, 
V, ... t. 

Un> K ••• tn 

Subtract each row from the one which follows it, beginning with 

the last but one. Then, if 

we have • •• h 
.. 

<1 .. A4 

^^n-1 > 

7 

<J •• AC. 

Repeat the same operation, stopping short at the second row. 

2—2 ■ 



20 THEORY OF DETERMINANTS. [chap. II. 

Then, if AX = Am,^,- Am,, 

D = ^ .. • 4 
Am,, Ai;^ .. • a«. 

AX. AX .. • A% 

A“»..-. ,AV„.,... ■ A V. 

way, : leaving ■ out a row each 

I) = ... h 

Am,, Ai;^ ... Ai, 

AX ... ■A% 

A”-‘m „A»-X.. 
T ; AX = = A-K.- - A'-'m,, 

Suppose now that is a function of degree 0, of degree 1, and 

so on, then all the elements below the leading diagonal of D 
vanish, and 

= AX ... 

For example, if 

m (m—1) ... (m —p + 1) - 
= -1.2 ...ff - 

m^, TTij ... = 1. cZ. cZ^... cZ*" 

(m + (Z)„ {m + d\ ... {m + d)^ =d^. 

I (m + rcZ)o, (m + rcZ)^ ... (m + rcZ)^ 

For here A* (m + td)^ = d\ 

6. In a determinant of the form 

0, 1, 1, 1 

1, «u> ^12> «13 

1, «21> ®22> «23 

1, ®31> «32> «33 

every element of which is a type can be replaced by 

where and are arbitrary quantities, without altering the value 

of the determinant. 
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For multiply the first row by and add it to the row, then 

in this row the first element is still 1, while in place of we have 

Now multiply the first column by and add it to the 

column; the element in the first row is still unchanged, while the 

element under discussion has become 

These transformations have left the value of the determinant 

unaltered. 

7. We are now in a position to solve the system of linear 

equations 

^11^1 + ^12^2 + ••• + «l«^n = 

«21^i + ^^22^2+---+«2n^„ = '^^2> 

Vl+««2^2+--+«nn^n = '^n ' 

[or, as they may be more briefly written, 

0<I®, + “iA + •.. + a„a:„ = M, (i = 1, 2.. .m)]. 

We have 

«ii«i + aiA + - •• +«iA «13- 3
 II o

 

^22’ «23- ••«2n 

«n2> ••«nn 

for each element in the first column vanishes (l. 12). 

Since the elements of the first column of this determinant 

consist of w +1 elements, it can be resolved into the sum of w + 1 

determinants. 

The first of these is 

The last is 

®12’ C^13 

«21^1> ^22 > CO 

^^n2> 

a
 

3
 CO ..a 

®12> «13- •^^in =- a,2- 

®22> CO •• ®2n «22 •’ ••«2n . 

®n2> ®«3 • «n2- 



22 THEORY OF DETERMINANTS. [chap. II. 

While any of the others, such as 

Ct22***®2n 

vanishes, because the elements of the first column are proportional 

to those of the column. 

Thus 1 ®»jfc 1 ~ > ®12 ' * * 

^2 > ^22 * • * ®2n 

^n> ®n2***^nn 

And in general is obtained by substituting in the determinant 

for the elements of the column the quantities and 

dividing the resulting determinant by |a^|. 

8. If 'p rows of a determinant whose elements are functions 

of 00 become identical when x=a, then the determinant is divi¬ 

sible by (x — ay^. For, subtract any one of these rows from the 

remaining jp — 1 rows; the determinant remains unchanged, but 

now when x = a dl\ the elements of these jp — 1 new rows vanish, 

hence each element divides by a; — a, and thus dividing each of 

the p — 1 rows by this factor we see that the determinant divides 

If when x = a the rows are not equal, but only proportional, 

the theorem is still true. 

Ex. The value of the determinant 

is 

X, a... ...a 

a, X... ...a 

a. a,,. ...X 

{n rows) 

{x-\-{n — I) a] (x — a)" \ 

For if x = a the n rows all become identical, thus the deter¬ 

minant divides by {x — a)""h 
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Adding all the rows to the first, each element in that row 

becomes x {n — l)ay this is therefore a factor in the determinant. 

Thus the determinant divides by 

{a; + (w — 1) a] {x — 

This is of the same degree as the determinant, and as the co¬ 

efficient of ic" in the determinant and in the product is unity the 

determinant must be equal to the product. 



CHAPTER HI. 

ON THE MINORS AND ON THE EXPANSION OF A DETERMINANT. 

1. If from the n rows of the array 

a , a ... a 

we select any p rows, and then from the new array which these 

form select p columns, these when written in the form of a deter¬ 

minant constitute a minor of the given system. Such a minor is 

said to be of the p'^ order. 

Since we can select p rows from n in 

n(n—l) ... (n — p + 1) 

1 . 2 ...p 
'iK 

ways, and p columns from n columns in a like number of ways, it 

follows that the given system of order n has minors of 

order p. 

2. If out of the n—p rows which remain after the abovejp 

have been selected we take those n—p columns whose column 

suffixes are different from those selected in the minor of order p, 
we have another determinant of order n—p said to be comple¬ 

mentary to that of order p. 
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For example, in the determinant 

®12> ^13 > ®14> 

®21> ^22> ^23> **• ^^25 > 

®51> ^62» . «55 

®3S> ®34» «35 

®12 and a^g. 
«44^ C^45 

1 21 > 22 
«53> 

are complementary minors. 

3. p = 1, i.e. if we take a single element, the complemen¬ 

tary minor is a determinant of order — 1, which is called the 

complement of the element. This complement is obtained from 

the original determinant by omitting the row and column in which 

the selected element stands. For example, the complement of the 

element a^., which we denote by -4^, is 

^11 ••• “U-IJ ... 

^i-lk+1 ••• «i-l« 

®i+U ••• ^i+ik-it ^i+lh+1 ••• 

• * * ^nk-l > ^rik+l ' ^nn 

This is sometimes spoken of as a first minor of the given 

determinant. In like manner the determinant formed by omit¬ 

ting p rows and p columns would be called a p^'^ minor; it is 

to be observed that a p^^ minor is a determinant of order n — p. 

4. We may extend the meaning of complementary minors as 

follows: From the array in Art. 1 select p rows and p columns, 

then from those that remain q rows and q columns, from those 

that remain r rows and r columns, and so on. With the elements 

in these selected rows and columns form determinants; these will 

form a complementary system of minors if 

p+q + r + ...=n. 

The number of ways in whioh we can form such a system is 

I_^_r 
(jpl 2^! r! ...J 
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It is of course permissible that one or more of the numbers 

Py q, r ... should be unity; the corresponding minor is then a 

single element. For the determinants 

®12> «16 

a34. ®85 

1 > ®42> «43’ «46 

«62> «63> ^66 

form such a complementary system, and there are 3600 such 

systems. 

5. We have hitherto only considered the product of a set of 

alternate numbers equal in number to the number of units. Let 

us now consider the product 

A + • • • + + “mA + •.. + a) ; 
this is equal to 

* * • ^mr^p^q * * * » 

where jp, q ... r consist of all combinations m at a time from 

1, 2 ... n, repetitions being allowed. 

First, if m > n, we must have repetitions in every term of the 

sum, and hence (i. 16, Equation 2) the whole vanishes. 

If m — Hy we have the case of i. 19, and the sum is the deter¬ 

minant I I . 

But if m<71, the sum is formed by taking ioT q r all 

771-ads from 1, 2 ... ti and per mutating the elements of each 7?^-ad in 

all possible ways. 

Namely, the term 

••• ^mr^p^q • • • 

is got by taking from the first factor of the product, from 

the second and from the last factor. But we should still 

get the product of the units ... c,., though in a different order, 

if we take the term of some other factor than the first, the ql'^ of 
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some other than the second, and so on. The term of the product 

which multiplies ... is thus got from 

by permutatingq ... rm all possible ways, and giving to each 

term the sign corresponding to the number of inversions in its 

second suffixes,p, q ... r being considered the original order. The 

sum of these products is 

^iq ... a,. 

... 

^tnpy ^mq 

Hence the product of the m factors is equal to 

^1P> • «lr % •• • . .(1). 

^23 *' ’ * ^2r 

^mpy ^mq * * 

In like manner, if we take the remaining factoi*s necessary to 

form the determinant |a^|, we have 

K+i ,«.+ •••+ ••• (<*««!+ ••• +“»a) 

= s 
®7n+2i» * * * 

(2), 

where w, is a combination of n —m numbers selected from 

1, 2...n. 

Now multiply the equation (2) by the equation (1) and we 

obtain 

««1 = 2{(-1)'' ^ipy ®W-®lr ^m+iu • * • ^tn+iv 

^mpy ^mg • • • ^mr ^nu ••• ^nM> 

where from the nature of the alternate numbers e it follows 

that the two determinant factors under the summation sign are 

complementary minors, and v is the number of inversions in 

ejfig... e^e^e,... or in p^ q ... r, w, v ... w. 
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This theorem, usually called Laplace’s theorem, gives the 

expansion of a determinant in the form of a sum of products of 

complementary minors. 

It is assumed in the above that the complementary minors are 

formed from the first m and last n — m rows. Since by a suitable 

change of the order of the rows and sign of the determinant any 

m rows can be brought into the first m places, this is no real 

restriction. 

6. For examples we have 

a,, a„ a3, a, = (12) (34) + (23) (14) + (31) (24) 

K K, K. h + + (1^) (23) + (24) (31), 1 / 2 ^ 3^ 4 

^4 

cZj, cZj, cZg, 

where for brevity 

(12) (34)= 

K> K 

In like manner 

(^3, 
&c. 

^6 

K' K K K K 
Cl> g.. 

. 

«i. . 

= (123)(45)+(142)(35)+(134)(25)+(243)(15) 

+ (125) (34) + (315) (24) + (235) (14) 

+ (145) (23) + (425) (13) 

+ (345) (12), 

where 

(123) (45) = 

K K K «4. e. 

Cj, Cj, C3 

7. If when the deteraiinant is divided into two sets of m and 

n — m rows there are n — m columns of zeros in the set of m rows, 

the determinant reduces to the product of the minor of the 

remaining m columns and its complementary minor. 
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This is clear, for with the exception of this single minor of 

order m all the others vanish because they contain at least one 

column of zero elements. 

If the set of m rows contains more than n — m columns of 

zeros the determinant vanishes. 

Thus, for example : 

ttj, a^, 0, 0 = ttj, Cg, c, 

0, 0 6,, 6j d^, 
^4 

’ ^2 ’ ^3 J ^4 

while 

ttj, ttg, 0, 0, 0 = 0. 

0, 0, 0 

Cj, Cg, 0, 0, 0 

(Zj, (Zg, (Zg, (Zg 

^2> ^3» ^4> ^5 

8. In Art. 5 we resolved a determinant into the sum of 

products of pairs of complementary minors. We can however 

resolve it into a sum of products of as many complementary minors 

as we please. 

For we can divide up the n factors whose product is |a^| as 

follows : Take the first Uy the second v ..., the last w. The product 

of the first u factors would be of the form 

a,, . ..a,, 

®21>> ^^2« • ..a2. 

CL , (X ^. ur 

2A ,efy...e. 

p^q ...r being u numbers taken from I, 2 ... n without repetition 

and a minor of order u from the first u rows. 

In like manner the product of the next v factors would be 

... Bjyi 

being a minor of order v chosen from the v rows. 
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Lastly, the product of the w factors would be 

with a similar meaning for the quantities involved. 

Now form the product of all the factors, taking care to keep 

them in their proper order, and 

I I == 
where D,, ... form a system of complementary minors of 

the determinant |a^|. 

The sign of the term is determined from the number of inver¬ 

sions in 

P,q-r, f, g...k r,s...t. 

9. If in Art. 5 we restrict the first product to the single 

factor 

aaei + oA+'-'+OiA.(1). 

the second product becomes 

+ ^i2^2 d* ••• +^in^n.(2), 

where is the complement of (Art. 3) and 

For we get a term of the product by leaving out each unit 

such as Bj in turn, i.e. by forming a determinant with the remain¬ 

ing n — 1 columns; and since we previously omitted the row of 

the given determinant, this determinant is A^. 

Now multiply the — 1 factors which form (2) by the remain¬ 

ing factor (1); we obtain 

( 1) I I ~ ^t2^fa d" • • • d" ( 1/ d" • • • 

For 

= (-ire.... «„ = (-!/-■, 
ejEj^=0 if j is not equal to h. 

The factor (--1)*"^ on the left is accounted for in the same 

way. 

Thus 
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For example, 

“4 “4 - - ^8 “l> «4 

6.. h, K h K K 64 K K 
c., d. d>. d. d.> d,. d. 

d. 

+ <^8 ®1> ®8. O4 ■ -c, a., a. 

64. K 64 h. K h 
d,. d,, d. d,. d,, d> 

10. In the final equation of Art. 9 A^f is got from |a^| by- 

erasing the row and column and writing the remainder as a 

determinant. It is however more symmetrical, and sometimes 

convenient, to give to a different form obtained by a series of 

cyclical permutations of rows and columns. 

In A^f remove the first row by a series of interchanges to the 

last place, then move what is now the first row to the last place, 

and so on, until we arrive at what was the (i — 1)*^ row, which we 

remove to the last place. This introduces (i — l)(n — 2) changes 

of sign. 

Now remove the first column to the last jlace, and so on,j — 1 

times, necessitating (j — l)(n — 2) changes of sign. In all we have 

introduced 

(i - 1) (n - 2) + (j -1) (re - 2), or (i +j)n 

changes of sign (an even number of changes being neglected). 

So that, if the new determinant is called A y, we have 

and ^ (- y, 

where 

^T+iy+i> di+lJ+2• • • • di+ij-i 

djJ+D ^lJ+2*** • •^ln> 0^11* ••ay-i 
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For example, 

dj, dj, dg 
+ K 

K K 0^2, (^3 0^3^ ^1 Q'2 

('IJ ('i) Cg 

In future we shall always write 

\aJ = 'Z%A^, 

and suppose that A^j has its proper sign. 

11. We may arrange the complements of the elements of a 

determinant in another square array, and then the two arrays 

A..An] 

(1). . [.(2), 
.An) 

are said to be reciprocal. 

If now a sum be formed by multiplying each element of a row 

of (1) by the corresponding element of a row of (2), and adding 

these products together, the sum is equal to the original deter¬ 

minant or zero, according as the two rows have the same suffix or 

not. Namely, 

Aj^ + ...A = | or 0, 

according as i is or is not equal to j. 

For if i is equal to j the sum on the left is the expansion of 

the determinant according to the elements of the row, but if ^ 

is not equal toy the sum on the left is what the expansion of the 

determinant would be, if its and rows were identical, but if 

the elements of two rows are identical the determinant vanishes. 

In like manner, if we multiply the elements of a column of (1) by 

the corresponding elements of a column of (2), we get 

d" d" • • • d" 

and this sum is equal to or 0, according as z is or is not equal 

toy. 

12. If all the elements of a row vanish the determinant 

vanishes, as we see at once by expanding the determinant accord¬ 

ing to the elements of that row. If all but one vanish the 

a. ,...d 11 • • •' 
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determinant reduces to the product of that element and its com¬ 

plement; viz. if all the elements of the i*** row vanish except 

then the determinant reduces to 

Thus for example, 

a,2. = ^11 
a,,. 

••0^2« 

0, ®22 * ••0^2n 

0, ^32 • ••«3« C^«2- • • ^nn 

0, ^^«2- ..a„„ 

^^13- = ^11 ^22 J Cf'-Zn 

0, ^22 ^^23- 0, ^33 • • • (^Zn 

0. 0, ^^33- 
.... ... 
0, 0. a ^nn 

0 0, 0... 

13. The theorem of the preceding article is of use in evaluat¬ 

ing a determinant by reducing it to one of lower order. If the 

determinant is not of the required form to begin with, it can 

sometimes be reduced to it. We may exemplify this by finding 

the value of the determinant 

D_ 0, a, a...a 

h, 0, a...a 

h, h, 0...a 

h, h, 6...0 w. 
the suffixes denoting the order of the determinant. The elements 

of the leading diagonal are zero, those to the right of it all equal 

to a, and those to the left all equal to h. 

s. D. 3 
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If we subtract each row from the one which follows it, begin¬ 

ning with the last but one, 

0, a, a, a.a 

h, — a, 0, 0.0 

0, h, —a, 0.0 

|0, 0, 0, 0...-a|(r). 

The first column contains only one element, hence 

Dr= — h a, a, a, a... 

h, — 0, 0... 
0, h, - a, 0... 

0, 0, b, —a... 

. (’•-1)- 

Kegard the elements in the first row as 

tt-hO, O-j-tt, O-j-tt... 

then (ii. 8) we can resolve the determinant into the sum of two. 

D^=—h a, 0, 0, 0... —h 0, a, a, a... 

h, - a, 0, 0... b, —a, 0, 0... 

0, b, -a, 0... 0, b, - a, 0... 

0, 0, b, -a... . (’•-1). 

. (’•-I) 

In the first of these two determinants all the elements above 

the leading diagonal vanish, hence its value is (—I)*""^ The 

second determinant is of the same form as that to which we first 

reduced D^, hence 

I)^ = -bD,^, + h{-ay-\ 

This is an equation of differences with constant coefficients for 

its solution is 

D, = izjy (ar^ _ 
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14. In Art. 11 we saw how under certain circumstances the order 

of a determinant might be reduced. Conversely we are enabled 

to increase the order of a determinant without altering its value, 

namely, by bordering it with a new row and column in one of 

which all the elements vanish except that common to the other. 

Thus 

= 1, 0, 0, 0 ... 

X, «13 

®21’ ... 

= I [- 1)” 0, 0, 0 ... 0, 1 

«13 ••• ®ln» X 

®21’ «23 • * * * y 

where the quantities x,y ... are any whatever. By adding on to 

these a new row and column we can raise the order of the deter¬ 

minant to n -}- 2 and so on. 

15. In the determinant we suppose only the 

element to vary, since on expanding according to the elements 

of the row 

D = -h+ ... -P + ... 

the only variable term on the right is the product we see at 

once that 

da^ 

If among the elements of only is variable, we see that 

da^^ da^^da^ ’ 

d^D 
Thus is the sum of all terms in D which contain the 

product 

The differential coefficient 

3^D 
da^,da,^ 

8-2 
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is the determinant obtained by erasing in D the and rows and 

the A;* and s*** columns, it is complementary to 

and 
da^da^^... 

In like manner it is plain that 

d^~^D 

da^^da^,... 

are complementary determinants if 

/. 9 •••V. 9 ••• 

r, s ... u, V ... 

are each of them permutations of 1, 2 ... w, i.e. if the product 

is a term of the determinant D. 

16. If all the elements of a determinant are functions of a 

variable t we see that 

dD _^dD ^ 

~^da^- dt -I- dt 

If we denote differential coefficients with respect to t by accents 

we have 

D' = + .. . 

+ ... = 
«12 

... + ®'l2’ •' 

® 21» «22 ••• ®2n «21. a'22^ •• «2« 

So that jy is the sum of n determinants obtained by substituting 

for the elements of each column of D in succession their differen¬ 

tial coefficients with respect to 

An interesting example of this is to consider the differential 

coefficient of ^ 

D = U, u', u", . .. u'”-" 

Vy v\ . .. 

W, w\ w", ., .. w'”'" 

accents denoting differential coefficients with respect to t. 
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Each of the first n —1 determinants obtained by the pre¬ 

ceding rule vanishes because it has two columns alike, the last 

alone does not vanish, so that 

dD_ Uy u ... w'"’ 

Vj v' ... 

Wy w' ... 

As another example take the determinant 

1, 1 ... 1 

^2 ••• K 

t,\ ... c 

C' - C' 

Then is got from by substituting for the elements of the 

column 
0, 1, %y St; ... 

Hence 

Oy 0 ... 0, 1 

1, 1 ... 1, 

2f„ 2t, ... C 

, (n- 1) (n - 1) ...(«- 1) C?, V' 

= (-ir(™ll)! JD^,. 

17. We may use the theorems of Art. 11 of the present 

chapter to prove those of Arts. 3 and 4 of Chap. II. 

If each element of a row of a determinant is the sum of p 

terms, the determinant is equal to the sum of p determinants 

having for their elements the separate terms of the sum in 

question. 

For if + 2^, + ...+4. 

Then | a,J = ta^A^ 

= ^PkAa+%qi,Aa + ••• + 

= p + Q + ... + T, 
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where P is the determinant obtained from the given one by writing 

PvPi ••• Pn elements of the row and Q... T have similar 
meanings. 

The value of a determinant is not altered by adding to the 

elements of any row those of another row multiplied by a constant 
factor. For if to the elements of the i"* row we add those of 
the row, each multiplied by p, the resulting determinant is 
equal to 

^ d* P^ji^ -^ik ~ ^^ik^a d" P^^jk^ik 

'= I a« I • 
The last sum vanishing by Art. 11. 

18. If each element of a determinant consists of the sum of 
p terms, we could by continued application of the first theorem in 
Art. 17 reduce this determinant to a sum of determinants whose 

elements are all single terms. But a formula of expansion has 
been given by Albeggiani which presents the result in a more 
suitable form for applications. - 

Let «« = a«i d- + ... + 

so that each element in the determinant is the sum of p terms. 
Then each column of the determinant when written at full length 
would consist of p partial columns whose suffixes are the third 

suffixes of the above elements. With these partial columns we 
can form p determinants, taking all the partial columns with the 
third suffix 1 to form the first, those with the third suffix 2 
to -form the second, and so on. We shall denote these deter¬ 
minants by 

7) («) 7) («) 7) (n) 
> -*-'2 • • • > 

SO that 

••• 

> ^22u • • • ®2nM 

^nlu> ^n2u • • • ^nnu 

The first two suffixes tell us the row and column in which the 
element stands, the third the determinant to which it belongs. The 
original determinant is denoted by The index in brackets 
tells us the order of the determinant. 
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19. We shall find it necessary to employ the term comple¬ 
mentary minors in the following sense. From the elements of 

form a minor of order a by selecting a rows and columns. 
Then in sel^cA^ rows and columns, whose suffixes are 
different from those selected to form these form a determi¬ 
nant and so on until we take tt rows and columns from 
to form a determinant none of which have the same suffix as 
any of the preceding. Then if 

a + ^ + 7+ ... +7r = n.(1), 

shall be called a series of complementary minors. Any one or 
more of the numbers a, ^ ... tt can be unity or zero. 

20. We shall now prove that 

where the meanings of the summation signs will be explained 
presently. For we have 

i>"’ = n {a^e^ + + ... + a^A). 

and if = a„/, + +... + 

D'”’=n (MQ + Uij+...+M^) . (2), 

the product containing n factors. 

We shall obtain a term of the product on the right if we take 
a factors such as ^ factors such as factors such as u^^, 
provided the equation (1) is satisfied. 

But from the definition of a determinant this product of 
factors is equal to a determinant of order n the first a of whose 
rows come from the next /3 from ... the last tt from 
Expand this determinant in the sum of products of complemen¬ 
tary minors of order a, /9 ... tt selecting the rows of the minors 
from the first a, the next ^ the last tt, its value is then 

(Art. 8) 

... 

with the notation of Art. 19, and the summation sign means that 
we are to take all the possible complementary minors. 
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This is only a single term in the expansion of the product (2), 

the whole product is obtained by summing this for all values of 

a, ^ ... TT which satisfy the equation (1). 

Thus .(3). 

21. The number of terms in the sum 2 is 

Let us compare the expansion (3) with the expansion of the 

multinomial 

The general term is 
GD-DP...D/.(4), 

where a, ^ ... tt satisfy (1) and 

a! ! ... TT ! ’ 

Comparing (3) and (4) we see that in expanding the determi¬ 

nant we replace G by 2, and a, yS ... tt are no longer exponents, but 

merely indicate the order of the determinant. 

Hence we may write symbolically for the expansion of our 

determinant 

where in every term of the multinomial expansion we replace 

the coefficient by a summation sign, the number of terms in the 

sum being given by the multinomial coefficient and the exponents 

a, ^ ... TT now indicating the orders of the complementary minors. 

Thus finally we have the symbolical equation 

22. 
minant 

Let us make use of this theorem to expand the deter- 

11 + ®13 » «13 •• 

®2l > ^22+ ^2 » ®23 ■ • ®2n 

^31 » ®32 J ^33 + ^3 • ■ •• ^^3« 

®nl » ®n2 > «n3 •• 

according to products of the quantities 2.^... 
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Here we must write 

])in) ^ 
®11 ••• ^in b

 

II 

o
 

o
 

9 
o

 

o
' 

®nl ••• ®nn . 

o
 

o
 

Then by the above theorem 

D = (D, + D,r 

= D “ + 2 + 2 ^'“■"-0 ® +... + A”- 
Now clearly all minors of vanish except those whose 

leading diagonal is part of the leading diagonal of 

Thus 

The corresponding minors ... are got by erasing in 

the row and column, the and rows and columns, &c. 

Thus 

J) = + ... + 2!j2!2 ... 2!^. 

Or if we simply denote by D^, 

D = Dj + 22!, + 22!,2!^ + ... + -S'l-S'a •-S'„. 
o^a,i ' 

If 2!j=2!2... = 2!„ we get 

D = D, + z2f^ + z*2^^^ + ...+ 2”. 

*23. Any determinant can be written in the form 

i) = 0 + ttjj. a,, ... ®ln 

®21 » 0+^22 •“ C^2« 

««1 » ... 0 + a„„ 

We may now apply the theorem of Art. 22 by supposing 

0, 0,2 ••• a,„ 

0,1. 0 ••• 

A = 

and 

o«. “.0 

Zi = a^^. 
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Then 

i>-i), + 2a„ + 2a«a„... a„„. 

The general term being 

••• 

Where is the minor obtained from by suppressing 

the ... rows and columns, m in number. 

It is clear that is zero, for a term of D cannot contain n — 1 

terms from the leading diagonal only, if it does it must contain n. 

Ex. If 
0, djJ = (12), &c. 

0 I 
we have 

... a„ = (3^) + <*.,“33 (24) + (23) 

. + o-A (14) + (13) + (12) 

“« • • • “« + a.. (234) + o,, (134) + a,, (124) + a„ (123) 

+ (1234). 

As another example we may find the value of the determinant 

D = c^, a^ a, a a 

h, a, a ... a 

6, h, Cg, a ... a 

h, h, h, h ... c„ 

The general term in the expansion of this determinant is 

ScA ... 

when c,., C;^ ... are any m elements of the leading diagonal. But 

by Art. 13 

2) h-ml ^ _ 6»—1)_ 

Whence if f(x) = (c^ — a;) (c^ — a?) ... (c„ — cc), 

it is clear that 

a — h 
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If we wnte down the similar determinant of order w + 1, for 

which c„+i = 0, after dividing both sides by ah, we get 

Cj, a ... a, 1 

h, ... a, 1 

k h ... c„, 1 

1, 1 ... 1, 0 

If we suppose a — h, we get on evaluating the vanishing 

fraction in this latter determinant a determinant expression for 

f\a). 

24. We have seen how to expand a determinant according to 

the elements of a row or column. It is frequently useful to be 

able to expand a determinant according to the elements of a row 

and column. This is effected by means of the following theorem 

due to Cauchy, 

i ^ik I ~ ^r8^r8~^^rk^is^ik> 

which expands a determinant according to the products of ele¬ 

ments standing in the row and column. 

is the complement of and is the complement of 

in and is therefore a second minor of the original deter¬ 

minant. 

For every term which does not contain must contain some 

other element from the row and some other element from the 

column, and hence contains such a product as where i and 

k are different from r and s respectively. The aggregate of all 

terms which multiply is now differs from by 

the interchange of the suffixes k and s, thus the aggregate of terms 

which multiplies differs in sign only from that which multi¬ 

plies that is to say, differs in sign only from the coefficient 

of in Hence —B^^ is the* coefficient in question. 

25. This theorem is useful for expanding a determinant 

which has been bordered. For example by this theorem 

/(«)-/(6) 
a—h 

^pq I ^ik I 

where A^,^ is the complement of a^^ in | | . 
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By the selection of a suitable bordering we are often able to 

evaluate a determinant by means of this theorem. 

For example, let 

X) = ttg ... 

^2, ^3 ... 
^2, ^3 ••• 

I O'l) <^2> ••• 

all the elements in the column being a^ except that in the 

row which is x^. 

Then by Art. 14 

i) = 1, 0, 0, 0 ... 

1, (Xg, ttg ... 

1, fljg, Ctg ... 

1, ttg, fljg ... 

Multiply the first column by a^, and subtract it from the 

column; do this for each column, the value of the determinant is 

unaltered, and 

D = 1, -a^, -a^, -tig, ... 

1, x^ — a^, 0, 0, 
1, 0, 0, ... 

1, 0, 0, a^g-cig,... 

Here the bordered determinant is 

— 0, 0 

0, x^^a^, 0 ... 

0, 0, x^-a^ ... 

for which all first minors vanish except those of diagonal elements. 

Hence, in the theorem of this article, we must suppose i = ^; if 

/= (i», - a,) (ir, - a,) ... {x„ - a„), 

/>.) = 

it follows that 
D =/+ taj' (a-,). 

a theorem due to Sardi. 



CHAPTER IV. 

ON THE MULTIPLICATION OF DETERMINANTS. 

1. If we have two arrays 

^^12 ••• K. K - K 
^^22 ••• «2» (1), K> K - K. 

®inl > ®in2 • • * ^inl> ^in2 ••• Kn 

and form a new set of elements by multiplying each element in 

the row of (1) by the corresponding element in the row of 

(2j and adding the products, these elements form a new square 

array of m* elements where 

"h • • • "h ^in^kn' 

This array is said to be compounded of the arrays (1) and (2). 

2. We shall now shew that the determinant | c«. | is equal to 

zero if the two arrays (1) and (2) are redundant {m>n); is equal 

to the product of the two determinants |a«|, if m = n; and 

if the arrays are defective (m<n) is equal to the sum of the 

products of determinants got by taking any m columns from 

(1) to form a determinant and multiplying it by the determinant 

of the corresponding m columns of (2). 

Let G^ — + 0^63 + ... + 

then |Cf;fc| = n(7i. 

Now C^ = (a,i 6,1 + a,-2 + ... + hj e, 

+ 621 + (Xjj 622 + . . . + (l^J^ ^2 

+ ... 
+ + • • • + 
— + (Xj2B^-\-... + 
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where = +...+h^e^ 

form a system of alternate numbers of the order. 

Thus I c„ I = 11 + tto -Ss + ... + 

(i) If m > w the product on the right vanishes, for on multi¬ 

plying it out, in each term some one of the jB's is repeated and the 

product vanishes. 

(ii) If w = w since by I. 17 the jB’s follow the same law as 

the units e, 
I Ci»l = |a«l-n5. (i = l, 2...n) 

(iii) If m < w the product on the right is the sum of such 

terms as 

®2P ’ ^2? ’ ^2 

BM... 

^'mp> ^mq> ^mr *' 

when p, q, r ... are m numbers taken from 1, 2 ... w (iii. 5). 

But 

BM 

Thus 

^ir ••• ipf ^iq} 

hr 

^mp i 

^2 ^8 

c„| = 2 «lr ••• • ^1P> K-\ 

®2P> a2r ••• ^2P’ ^2?’ b. ... 

^mpi ^mq> ®«r • • • ^mp > ^rnq > 

where for p, r... we are to write all possible m - ads from the 

n numbers 1, 2 ...n. 

3. The second case of Art. 2 gives us the rule for multi¬ 

plying two determinants. We see also that the product of two 

determinants of the order is also a determinant of the 

order. Thus 

••• bn ... 6.. ••• 

• • • ^fifl 6.. ... ••• 
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where the quantities are given by 

^ik ~ ®il "h • • • + O'inbjcn' 

But since in either, or both of the determinants | |, | h^J^ \ we may 

interchange rows and columns without affecting their value, we see 

that the product of two determinants can be obtained in the form 

of a determinant in four different ways, viz. the element ^^-s one 

of the four forms : 

^a^kl “h ®i2^t2 + • . . + 

+ . . . + dirfink^ 

"h ®2i^2t + . . . + 

“h d^hj^ + . . . + d^J)j^y 

where we multiply the elements of a row of | | by the correspond¬ 

ing elements of a row or column of | |; or the elements of a 

column of | | by the corresponding elements of a column or row 

of \hfj^\. There are really only two essentially distinct cases: 

multiplying by rows, when we multiply corresponding elements of 

two rows together; and multiplying by rows and columns, where 

we multiply the elements of a row by the corresponding elements 

of a column. 

4. We can only compound two arrays when they have the same 

number of rows and columns, but we can always form the product 

of two determinants, for by ill. 14 the order of one of them can be 

increased until it is equal to that of the other without altering 

the value of the determinant. So that the product of two 

determinants of orders n and m {n>7n) is a determinant of 

order n. 

5. Examples. Compounding the two systems 

“i. &,> 0, p„ q„ r. 

we get the theorem 

(^iP2 + K92+V2^ (^2P2 + h92 + V2 

K 

Pi> 9k 

P2y 92 

Pk> 

P2> ^2 

K 9V 

92> »*2 
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while if we compound the systems 

we get 

P2 

h 9. 

C,. C. ’’1- 

a,Pi + “A. + 

KPx+hP^> ^x<lx + h^x> ^*•1+62^ 

= 0. 

C.i’i+Csft. Ci?, + C2?2, Cin + Cj’-j 

Again, the product of the two determinants 

®2> ^2 P2> <l2> ^’2 

®3> ^3’ ^3 i>3> 9'3» ^3 

is the determinant 

+ + “ii’i + 6,92 + c,»'2. a,^>s + ^?, + V, 

“2A + ^2?1 + C2»'i. “22'2 + ^?2+V2, O, p, + J,?, + C,r, 

asA + ^a?i + ®s»'i> a8^’2 + 68?2 + C8^> “aK + ^affa + Va 

While 

= 0
 

0
 

®2> ^2> ^2> ^2 i^2> % ®2> ^2> ^2’ ^2 ft. ft. 0. 0 

®3> ^3> ^3> ^3 K ^zy ^z 0, 0, 1, 0 

^4> ^4> ^^4 ®4> ^4> ^4> ^4 0, 0, 0, 1 

(forming the product by rows and columns) 

= a.!?.+ 6.92. Cl. (^1 

<^,Px+KPx> <^x1x + K9x> C2. <^2 

«aft + &aP2. aa9i + ^a92. ^a. ^^a 

ai9>i + &a9>2. aaS'i + ^.S',, c., d. 

Multiplying by rows we have 

a, h c, d ac + hd, - ad' + he 

-h\ a' -d\ c' — h'c + a'd, h'd' + ad 

Now if a, J, c, c? are the complex numbers 

a —x-\-iy h=^u + w 
7 • i = c + 1^ d — r-\-%s 



5—7.] ON THE MULTIPLICATION OF DETERMINANTS. 49 

and a\ h', c\ d! their conjugates, a' — x — iy, &c. On multiplying 

out the three determinants we have Euler’s theorem concerning 

the product of two numbers each the sum of four squares, viz. 

{x^ + v^) + + s^), 

= [px — qy-\-ru~- svY + {py qxrv + sv)^ 

+ (pu qv — rx — syY + {pv — qu — ry + sxY. 

6. We may compound an array with itself, thus if we com¬ 

pound the first array in Art. 1 with itself, the resulting determinant 

has for elements 

~ "h + . . . + (J'irfl'kn ~ ^kif 

and 

|Cttl = S a,,, o,,, ... 2 

^2r ••• ’ 

or the determinant is the sum of squares. If then the elements 

are all real the determinant can only vanish when the 

determinant under the summation sign on the right vanishes for 

all values oi p,q,r... 

Thus compounding 

c, 

with itself we see that 

< + 6.^+Cl^ a,aj+6,6, + CjCj _ 6, 6,, c, c, ' 

+ + + ~ Oj, h K <=2 “2, £>2 ’ 

or 

« + (a/ ++ c^) - {afi, + 6,6, + c.c,)" 
= (a,6, - a,6,)’ + (6,c, - 6,c,)’ + (a,c, - a,c,)". 

Again 

«i. K 0i ‘ 0,1 +K +®i“> OA + Ms + Vs- “A+^&a + Vsl 
a„ 6„ c, = aA+6,6, + c,c„ a/ +6," +c/, a a + 6,6, + c,c, . 

a„ 6„ c, aA + + «2«a. < + V + «»’ I 

7. Prof. Sylvester has shewn how, by the artifice of bordering 

the determinants as in ill. 14, the product of two determinants of 

order n can be represented in 7i + l distinct forms. We shall 

illustrate this for the case w = 8. 

S. D. 4 
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The product of the two determinants 

’ ^2 ’ ^2 
> 

^52> 9'2> ^2 

K ^8 %y ^8 

is the determinant of order 3 : 

“iPi + + a,K + ^28 + c/8 

+ + + “2A + %s+®>»'s . 

“si’l + 08ft+&3?2 + V8. “sP3 + %S + V» 

But if before forming their product we write the determinants in 

the respective forms 

tti, c.) 0 __ 
Pv ?i. 0, J-j 

ctg) 63) C3) 0 A. 0, >-3 

<*»> ^8. <=8. 0 A. ?8. 0> ^ 

0, 0, 0, 1 0
 

0
 

0
 

their product by rows is the determinant of order 4: 

o-iPi + hiv “2A+63?3. c, . 

O'zPx + Kqi. “3A+68?3. a>A+%3. c, 

*•1 . »'3 . >•3 .0 

Again TTriting the original determinants in the forms 

“1. 61. «1. 0, 0 A> 0, 0, q^, r, 

«2. 63. C3, 0, 0 A. 0, 0, q^, 

K o„ 0, 0 > A> 0- 0, ?3> »'8 

0 , 0, 0, 1, 0 0 , 1, 0, 0 , 0 

0 , 0, 0, 0, 1 0 , 0, 1, 0 , 0 

their product is now the determinant of order 5: 

“lPl> “l?3. “iPs. K 
“sPl. «sP3. “2?8> K <^8 

ttsPl. «8?2. «3P3. h< Cs . 

?1 . ?3 . ?8 . 0 , 0 

? 8*3 j 0)0 
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While writing the determinants in the forms 

(Xj, hi, Cl, 0, 0, 0 

^2> ^2> ^ 

®3> ^3) ^3> ^ 

0 , 0, 0, 1, 0, 0 

0, 0, 0, 0, 1, 0 

0 , 0, 0, 0, 0, 1 

1, 0, 0, 0 , 0, 0 

0, 1, 0, 0 , o,.o 

0, 0, 1, 0 , 0, 0 

0, 0, 0, Pi, qi, Ti 

0, 0, 0, p^, q^, r, 

0, 0, 0, ps, qs, ^3 

their product is the determinant of the sixth order 

Oi, hi. Cl, 0 , 0, 0 

®2> ^2> ^2> 0,0,0 

®3> ^3> ^3> 0,0,0 

0 , 0, 0, Pi, qi, Vi 

0, 0, 0, _p2> q2> ^2 

0 , 0, 0, ^3, $^3, r3 

This rule is interesting as giving us a complete scale whereby 

we may represent the product of two determinants of order n by a 

determinant of any order from n to 2n inclusive; it is also frequently 

useful in applications of the theory. 

8. The fundamental theorem of Art. 2 regarding the deter¬ 

minant formed by compounding two arrays can be deduced as 

follows from Laplace’s theorem, ill. 5. 

We can write the determinant | Cj^. | in the form of the deter¬ 

minant of order (ti -p m). III. 14. 

^11 • •• } K - K 

• • > K- ^mn 

0 . .. 0 , 1... 0 

0 . .. 0 , 0 ... 1 

where has the value ascribed to it in Art. 1. 

4—2 
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Now from the column subtract the last n columns multiplied 

respectively by a^y, then from the value of it follows 

that 

= 0 , ...hy 

0 ... 0 ,h^y...h^^ 
— ftjj ... — a^y, 1 ... 0 

— Oyn ... “” 0 ... 1 

In the determinant on the right multiply the first m columns 

by — 1 and then move the second m rows to the beginning, then 

(after m + m® changes of sign) our determinant is equal to 

«11 ... , 1 ... 0 , 0 ... 0 

— . 0 ... 1, 0 ... 0 

0 ... 0 ,6„ * • • > ^lm+1 • • • K 

0 1 

o
 • * • > ^mm+1 • • • ^mn 

... 0 , 1 ... 0 

• •• <*»» , 0 ... 0 , 0 ... 1 

Now expand this by Laplace’s theorem according to minors 

of the first m columns. Let us find the complement of the minor 

®/i> ®/2 •*. 

For this purpose we move the rows of a’s having the suffixes 

f, g--- up to the beginning; then move those columns of Fs which 

have the suffixes fy g... into the (m +1)®*, (m + 2)”'*... places. This 

does not alter the value or sign of the determinant, and in every 

place where a 1 stood before, will now again stand 1. Hence the 

required complement is 

5^, 0 ^2/> ^^g"* 

0 0 10 

0...0 0 1 
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®/l) a/2*- • K... 

a^*** K- 

1 . 

former result. 
our 

9. The value of any minor of order of the determinant 

|c« |, the product of two determinants | and |5^|, 

say, 0,= 

can be expressed as the sum of products of corresponding minors 

of order of the determinants |a^| and |5^|. 

For the elements of (7^ are got by compounding the two arrays 

0/1) 0/2 • •* ^fn ^pli * • * ^pn 

Ojrl) 

0^2 •• • Ofcn h^. -K- 

And since these arrays have more columns than rows, it follows 

that Gfj, is the sum of products of determinants of order fi, 

formed by selecting columns from the two arrays. Thus 

O/i) ^pi) ^pS • • • ^pr 

^qii ^qS*”^qr 

ad from 1, 2. n. 

One particular case of this we shall find presently of import¬ 

ance; namely, when the two systems a and h are identical, and 

when moreover /=^, g = q...k = s, so that the leading diagonal 

of Cy consists of elements from the leading diagonal of 

Then we see that 

is a sum of squares. 
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10. The dififerential coefficients of a determinant G, elements 

which is the product of two determinants A, B, elements 

5^, can be represented as the sum of products of differential 

coefficients of these determinants. 

We have AB = G.(1), 

and c„ = aah^^ + aaba+...+a,„h^. 

Differentiate (1) with regard to remembering that c^, 

are functions of this, we get 

j.dA dC. dC, ^ ^dC. 
= AT 

Multiply this equation by 

and add together all the equations which can be obtained from it 

by writing fory? the values 1, 2...n. Thus we get 

pv c?.il dB dC y p , dC ^ p , 

But by III. 11 all the sums on the right vanish except ^Bj^^bj^, 

which is equal to B, hence 

„dA d,B . 

da,^ dh, ^ ‘ 
Similarly we can prove the equations, 

(fO 1 ^ (f^ d.'^A 1 o 

1.2 * dK^dh,, , 

(fg _ 1 ^ d^A_ 

dc^dcj^dc^^ 1.2.3 da^Jia^da^' dhj^^dh^dh^ 

(u, V, w — 1, 2...n), 

whence the general law is obvious. 



CHAPTER V. 

ON DETERMINANTS OF COMPOUND SYSTEMS. 

1. If the elements of a determinant are not simple quantities 

hut themselves determinants, the determinant is called a compound 

determinant. 

Compound determinants are usually formed from the minors 

t)f one or more determinants. 

2. The number of all possible minors of order m of a given 

determinant is (ill. 1). We can form a square array with 

these minors, writing in the same row all those which proceed 

from the same selection of rows of the given determinant, and 

similarly for the columns. 

If n^=i fi and we give to the combinations of rows and columns 

taken to form minors the suffixes 1, 2 ... /a, we may denote that 

minor whose elements belong to the combination of rows and 

combination of columns, by and the whole system of minors 

will be 

.1. 
JPfki • • • J 

Corresponding to each element in this array, which is a minor 

of the original determinant, we have a complementary minor of 

order n — m. We shall denote the complement of by then 

these form a new array, 
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The arrays (1) and (2) are called reciprocal arrays of the 

order. Minors of these arrays formed from the same selection of 

rows and columns in each are called conjugate minors. The 

simplest instance of two such arrays is the original system and 

its system of first minors, viz. 

••• <hn Al - An 

An,... A, 

3. If we multiply the elements of the row of the array 

(1) by the corresponding elements of the row of (2) the sum' 

of the products is equal to A or zero according as z is or is not 

equal, to viz. 

P,A, + ^^^ or 0. 

For if z is equal to k this is nothing else than the expansion 

of the given determinant A according to products of minors of 

order m and w — m by Laplace’s theorem. If z is not equal to Tc 

the sum represents the expansion of the determinant when the i*** 

selection of rows is replaced by the the rows of this deter¬ 

minant are not all different, hence it vanishes. The particular 

case 
+ ... + an,A^ = ^ or 0 

according as i is or is not equal to h is considered in ill. II. 

4. Let ^ = I da I, -B = I 6^ I 

be two determinants each of order n for which we have formed 

the systems of elements discussed in Art. 2; the systems for the 

determinant A being denoted byjp^^, those for the determinant 

B by q^. 
We can form two new systems each of elements as follows. 

In the determinant A replace each combination of the rows m at a 

time by the fixed selection of rows marked i in the determinant 

B, this will give us determinants which we shall denote by 

til, ^*2 ••• tiii. In the determinant B replace the fixed selection of 

rows marked h by each combination from A in turn;, these deter¬ 

minants are called ... We have then two new systems 

^11 • • • tjfi 'Uii ... Uifi 

tfii • • • tfxfi 
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Then by Laplace’s theorem we have the two sets of equations: 

^ “ ViiiflhX + + • • • = P\\^'hi + P'hi^hi + • • • 

ta =/a^n+/«7i3+-.. + • • • 

4 = P + P isPL^i + • • • ~PiAn + Pii^'hi + • • • 

Whence by Art. 3, 

42>u + tei + -.. = p'iiA, 

^iiPxi *1" ^aPii "h ••• — p i2-^* 

And hence 

CPii3^ fcl P\i^ M ”h • • •) + ^,-2 (i^21? 11 ”h ^^22? M ”h • . •) + ... 

or + ...=•■ A + ...). 

That is to say by compounding the and rows of the new 

arrays the sum is AB or 0 according as i is or is not equal to Tc. 

5. We now proceed to investigate properties of determinants 

of the elements of reciprocal systems, and first we shall examine 

the system of the first order. 

Let A = la^l, D^\A^\. 

Forming the product of these two, 

AD = \0^\, 

■where + ... + a,„A^, 

and hence 0^ = A or 0 according as t is or is not equal to k. Thus 

AB= A, 0, 0 ... =A”; 

0, A, 0 ... 

0, 0, A ... 

I) = A^-\ 

6. Any minor of order p in the system A^ is equal to the 

complementary minor of its conjugate in A multiplied by A^\ 

2±a«a„,... = |a«, a, 
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and 2 ± ... be two conjugate minors in the two systems 

each of order p, and let 2 ± cbru^„ ... be the complement of 

S ± ••• So that 

^fk •" •• 

^sii> ^ak ••• ^gn ** 

®rfc ®rw> ^rv " 

••• ®*u» •• 

We may write 2 ± ajob„ ... = co 2 ± cLfiO>gi,... 

Now we may write 2 ± -^/i^gt... as the determinant of order 7i, 

^/k ••• -^/ut 

^gi> -^gk -^gul “^gv 

0, 0 ... 1, 0 

0, 0 ... 0, 1 

which consists of four parts. The first square consists of the 

elements of 2 ± -^/i^gt • • • J fo fbe right of this is a rectangle of 

71 —y) columns and p rows containing the remaining elements of 

the••• rows. The rectangle on the left below of p columns 

and 71—p rows consists solely of zeros, and the square on the right 

of ?i —rows and columns contains I’s in the leading diagonal and 

zeros elsewhere. Multiply this by the determinant A written in 

the form (1) above. Then (iii. 11) we have 

A^ jr A^iAg^... = A, 0 ... 

0, A ... dg^ , (ig^ 

0, 0 ... 
0, 0 ... a^, a„ 

-^A^t±a^a^... 

If we resolve the determinant on the right into products of 

minors of the first p and last 7^—p columns, 

.. 2 i A^^Agj^... =» A^ cd^ + ^/i^gk • • • 
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From this it follows that the ratio of two minors of the same 

order of the system is the same as the ratio of the comple¬ 

mentary minors of their conjugates. 

^ ifc ^fl^gh • • • _ ^0^ j: • • • 

X i Aj^Ap^... cd% + . 

7. As examples of the theorem in Art. 6, we have 

A.- -A. 
= A^^ 

^P+l. P+l • • • ^p+l, n 

A.- ^np+l ••• ^nn 

■^p+i, 
A 

P+l • • • P+ln = a„ ... a„ 

■^np+l - An 

. 

Si-- 

The relation 

may also be written 

in particular 

■^ikf = Aco ^ik> S 

S* 

dA ^_dA dA^^ d^A 

da^ * da^, da^^ da^^ da^^daj 

or 

dA dA dA dA 

■ do,„ 

= 0, we see that 

■^ik> •■=0, 

■^rk> -^rs 

A. ^ h. 

d^A 

Ark 

That is to'say, if the determinant vanishes, the minors of the 

elements of any row are proportional to the corresponding minors 

of the elements of any other row. 

8. As an example of the use of the method of Arts. 20 and 

of Chap. III., let us discuss the value of the determinant 

-P “ I "h I > 

a* and being elements of two determinants of the order 
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Symbolically we can write 

Now let AY\ be two determinants of order n, whose 

elements are 

then by Art. 5 

1 1 

<fo„ ’ :B<'» • db^ ’ 

A to) _ I I 
■^1 » 

sn B — -— 
-^1 ~ J^n) • 

Or, symbolically, 

A-1 B-^ 

Thus P = A”P” (AP, + fiA^. 

But (\Pj + f^^iT is the symbolical expression for a determi¬ 

nant of order n with binomial elements of the form 

Hence, passing from symbolic to real expressions, we have the 

determinant equation: 

I + I “ I I • 1 I • I j • 

Numerous other transformations of the determinant on the 

left can be effected. 

9. Next let us consider reciprocal arrays of order m. (Art. 2.) 

Let A = I _p„ I , A' = I I . 

The product AA' is a determinant of order jm whose general 

element is 

Mifci+iAiP-2+ ••• 

which is equal to A or 0 according as i is or is not equal to Jc. 

(Art. 3.) Hence in the product determinant all the elements 

vanish except those in the principal diagonal. 

Thus AA' = A'". 
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It follows therefore that A is a divisor of Now ^ is a 

linear function of one of its elements, say hence A can only 

differ from a power of -4 by a coefficient independent of the 

elements of A. Among the combinations m at a time of the 

numbers 1, 2 ... 7i there are 

which contain 1. Hence there are X, elements of A, which contain 

such for example asjp^^, P22 ••• 

Hence A=a?A^, 

where x does not depend on the elements of A. 

To determine the value of x, let = 0 except when i = Jc, and 

let 1. The same will he the case with the elements 

/. A = 1, A = 1, and .*. x — 1. 

Thus A = . 

and A' = 

for 

10. A minor of order r of the system is equal to the com¬ 

plement of its conjugate multiplied by 

For if we multiply the determinant S + g/i^gk ••• t)y the deter¬ 

minant A in the same manner as we did in Art. 6 for systems of 

the first order, we get; 

^2 ± ... =A''cot •••; 

2 ± q,3,, ... = A’~’'cot ± ... 

And in like manner 

S ± PfiP,k ... = ± q^qgk ... 

11. Let Aj^ he a minor of A, with h rows and columns. From 

this let us form the determinant whose elements are all the minors 

of order m of These last are minors of order m of A, and are 

hence elements of A. On the other hand, those among them 

which arise from the same rows or columns of A, and are hence in 

the same row or column of A, also arise from elements belonging 

to the same row or column of Aj,y which is a minor of A; al¬ 

together they form a minor M of A, which has rows and 

columns. While by Art. 9 we have 
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which gives a representation of the minors of A by means of 

powers of minors of A, 

12. If in the determinant A we select a minor A^ of order k, 

and form all the minors of order m in ^4 which contain 

neither all the h rows nor all the h columns of we shall form a 

minor of A with — {n — rows and columns, which is equal to 

^n-h . ^ 
where is the complement of Aj^ in A. 

Let us suppose that, as in Art. 11, we have formed the minor 

M in A' with {n — rows and columns, which is equal to 

^nr-h 

and let us consider the conjugate minor in A, i.e. that determi¬ 

nant whose elements are the complementary minors in A of the 

elements of M. 

From the law of formation of M this minor has for elements all 

the minors of A of order m, which have Aj^ as a minor. 

If a is the complement of in A, it follows from Art. 10 that 

a = M. 

Substituting for M its value we have 

The theorem is therefore proved, if we can shew that a is 

formed as prescribed. For this purpose we must remember that 

has for elements all minors of A which have Aj^ for one of their 

minors; to get a we have then to suppress among the combinations 

at a time of the rows and columns of A all those which contain 

all the rows or columns of Aj^; thus a has for its elements all the 

minors of A with m rows and columns, such that they do not 

contain all the h rows or columns of Aj^. 

13. Next let us consider the determinant of the system of 

elements in Art. 4, calling this determinant T, so that 

T=K\. 

Since 
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it follows that T is the product of the two determinants 

|p'«land l^al, 
that is, by Art. 9, 

T= , 

The value of the determinant of the elements is obtained by 
interchanging A and By and at the same time writing ti — m for 

m. Thus 

14. The ratio of complementary minors of T and 27 is a power 

of A multiplied by a power of B. 

For if 

T.= 

Since 

<n- > II “^A+lA+l • • • 

•• ^hh 1 i'^MA+1 ... 

II '• ^lA+1 •• 

• ^hh> ^hh^\ •• 

0 .. . 0, 1 .. 0 

0 .. o
 

o
 

.. 1 

we have by the theorem of Art. 4 

UT,= AB, 0 ... 0, ••• Ul,!. 

0, AB ... 0, '^ih+1 

0, 0 ...AB, '^JA+l • • • 

0, 0 ... 0, '^A+lA+1 • • • 

0, 0 ... 0, '^ma+1 • • • 

= {AB)\ U^, 

which gives when we substitute for U 

U. 
T. 

\, = (nA \=(n-l)„-A where 
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15. If the determinants A and B of Art. 4 had not been of 

the same order we must have increased the order of one of them, 

as in III. 14, until they were both of order n. We shall make use 

of this to investigate some further properties of the minors of A 
and compound determinants formed with them. 

16. If is a minor of order h of A, and if we border it 

in all possible ways with m of the remaining rows and columns of 

A, we get the elements of a new determinant 31^ of order (n — 

whose value is 

For we have 

II < 0, 0 . .. 0 

... 0, 0 . .. 0 

• • • 0, 0 . .. 0 

* • * ^h+\h> 1, 0 . .. 0 

®Af21 • • • 0, 1. .. 0 

«nl - 0, 0 . .. 1 

Now let us write Aj^ and A for A and B in the theorem of Art. 13 

and combine columns instead of rows (m is supposed less than K). 

Each combination m at a time of the first h columns of A will 

give a row of T, of which only a single element does not vanish; 

the value of that element is Aj^, and it will lie in the leading 

diagonal. The number of such rows is Each combination 7n 
at a time of the columns of A taken from h — lo^ the first h 
columns, the last being replaced by one of the other columns, will 

give a row of T, in which, besides elements of order h which 

have no influence, there will hen — h elements of order ^ + 1 which 

mil be the minor Aj^, bordered with a row and column of A, 

The first h—1 columns of this combination remaining fixed 

while the last varies among the last n — h columns of A, we shall 

get 72, — A analogous rows in T, which will give in the diagonal of 

T a square of elements consisting of Aj^ with the simple border. 

The same will be the case for each combination — 1 at a time of 

the first h columns of A, and the determinant of elements with 

simple border will appear times. Similarly we should have 
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the determinant of elements with a border of k rows and columns 

repeated h^_j^ times, and hence 

T = .4/”*. ... Mj;^ (1), 

while, by Art. 13, 

Hence, if we admit the law, 

_ ^{n-h-l)k-i j^{n-h-l)k-2 

(which is true for h=l, for then = Aj). Substituting for 

.Sfj, ifg... the exponent of is 

if we add {n — h — 1)^ to this, by a known property of binomial 

coefficients it becomes [n — 

Similarly the exponent of A is 

= (nA-1^. 

Thus from (1) and (2) 

(n-h-l)m {n-h-l)tn~l 

17. Another way of stating the theorem of Art. 16 is the 

following: If Aj^ is a minor of order A of A, and we form all the 

minors of A with m rows and columns which have it as a minor, 

we get the elements of a new determinant of order {n — 1i)^^, 
whose value is 

18. The particular case of m = 1 is so easily stated that it is 

of advantage to give it here. 

The elements of the new determinant are of the form 

c„= ... (i, k=\, ‘2....n-h), 

• • • ^hh > ^hh+i 

••• ^A+W+i 

and I c,j I 

This theorem and the theorem of Art. 16 are due to Prof. 

Sylvester, the proofs here given are due to M. Picquet. 

s. D. 5 
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19. Another modification of the theorem of Art. 16 can he 

obtained as follows: Let us return to the determinants A, A' of 

Art. 9, and form a determinant iL with the minors of • A ^ 

of order n — m\ this is a minor of A' of order {n — 
The conjugate minor in A has for elements those minors of A 
of order m complementary to those of ilij, and hence all those 

which have as a minor. This is precisely the determinant 

of Art. 17. Whence the theorem can be stated as follows: 

If An_j, is a minor of A of order n — h, and if we form a deter¬ 

minant il/i with all the minors of order n—m of A„_^, and then 

replace each element by its complement in A, we get a new deter¬ 

minant, whose value is 

M=A {n-h-l)m-h 

20. If now we form all minors of A of order n — m{m> Ji) 
such that neither all their rows nor all their columns belong to 

A„_^, which in A therefore overlap A^_^ or belong altogether to 

A^, these form a determinant W of order n^— (n — h)^j^ which 

is equal to 
^ (n-A-l)OT-ft 

First notice that this is essentially different from the theorem of 

Art. 12, applied to Aj^. There the determinant is formed with all 

the minors of the same order of A with more elements than A^^, 

and which do not admit all the rows and columns of A^. Here 

the determinant is formed with minors of the same order of A 

with fewer elements than A^_^, and which do not admit all the rows 

and columns 

To prove the theorem it is sufficient to consider in A' the minor 

N complementary to in A or to M in A'. For N is exactly 

formed with regard to A^_^ as the enunciation prescribes; it has 

rows, apply to it the theorem of Art. 10, 

_ j(n-l)m-l-nin+(n-h)m-h 

A^= cr 

or, replacing by its value, from Art. 17, 



CHAPTER VI. 

DETERMINANTS OF SPECIAL FORMS. 

1. When a square array is written do’wn, it is natural to 

inquire what simplifications arise in the determinant of the array 

when special relations are supposed to exist between the elements. 

And looking at the figure the relations which naturally suggest 

themselves are those which depend on the geometrical form 

which the array assumes. Hence we have various forms of deter¬ 

minants obtained by supposing relationships, of equality or other¬ 

wise, to exist between elements situated symmetrically in the 

figure; this shews how the notation employed has influenced the 

development of the theory. 

The most important of these special forms are symmetrical and 

skew symmetrical determinants. Here the special form of geo¬ 

metrical symmetry considered is with regard to the diagonal. 

Elements which are situated in regard to the diagonal in the 

position of a point and its image with respect to a mirror coin¬ 

ciding with the diagonal, have been called conjugate: two such 

elements are denoted by and 

2. If the determinant is called symmetrical. 

The square of any determinant is a symmetrical determinant. 

For I l'= 1 Ca 
■wliere c„ = a„ei„ + + .. . 

= Ch- 

It follows from this that every even power of a determinant is 

a symmetrical determinant. 



68 THEOEY OF DETERMINANTS. [chap. VI. 

3. We may also suppose the determinant to be symmetrical 

with respect to the centre of the square formed by the elements of 

the determinant. 

Two cases arise, according as the determinant is of even or odd 

order. 

First, if the order of the determinant is 2r, we may write it in 

the form: 

• 7i, ft. 

K ^2 • /^2 •• 72> ft. 

K. Cr • . m^, •• 7r> ft. «r 

^r> 7r • «r. K 

ft. 72- /^2. K 
ft. 7i • Cl. K 

In this determinant add the last column to the first, the last 

hut one to the second, the (r + 1)®* to the then it becomes 

(Zj + 6, + ft.. + ^i. ^1. /Z, .. • ft, 

(Zg + «2. 62 + ^2 •• + ^2. ^2. /^2 •• • ft. «2 

«r + fc. + ft- + ^r. f^r •• ■ ft. «r 

«r + 6.+ft. .. W,. .. -K, 

«2 + «2. ^2 + /^2 • + ^2. ^2- -h, «2 

(Zj + .. Wj + ^1. 

Now subtract the first row from the last, the second from the 

last hut one, the from the (r +1)®*, then 

-D= a, + a„ fe.+ft.. . /z, ... «1 

“2 +“2. h+1^2 •• ^2 . /^2 ••• ft . «2 

a, + Gf„ + A •• % + K, Vr > /z, ... ft . 
0, 0 ... ■ 0, n^-Pr> W2,-/Z, ... 6.-ft, a,-a. 

0, 0 .. • 0, n^-v^, W2-/Z2 ... «>.-ft. «2“«2 
0, 0 .. . 0, ^1-/^1 ... &.-ft. (Zj — Ofj 



3—5.] DETERMINANTS OF SPECIAL FORMS. 69 

Hence (iii. 7), 

+ ... Wj + z/J I ... 

a^ + a^ ... + I \n^-... a^- 

But if the order of the determinant is 2r + 1, it may be written 

in the form 
D = \ ... u^, ... 

\ ... u^y ... ^2, 

a^y ... n^y u^y ... 

V,y ... V^y Py ... V^y V, 

OL^y ^y. ... Vyy Uyy Tly ... hyy 

a^y ... V^y Mj, Tlj ... \y a. 

By proceeding exactly as in the former case, we can shew 

that 
D= dj + aj ... + Wj Uy-Vy ... tty- 

ay-\-ay ... riy + Vyy ... «! - 

2v^y ... 2v,y p 

So that when a determinant is symmetrical with respect to the 

centre of the square formed by its elements, it reduces to the 

product of two other determinants. 

4. If in a determinant the conjugate elements are equal in 

magnitude but opposite in sign, i. e. if 

^Uc~~ ^kl) 
the determinant is called a skew determinant. If, moreover, 

af,= 0, 

the determinant is called a skew symmetrical determinant. 

5. It will be useful to notice the connexion between two 

minors of these systems, such that the rows and columns sup¬ 

pressed to obtain the one minor correspond to the columns and 

rows suppressed to obtain the other. Two such minors may be 

denoted by 

P = dp, ■■■ , Q= ■■■ 

^a<i • * • 
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6. If the determinant is symmetrical, 

i.e. if ' — 

clearly P = Q- 

A special case of this is, that in a symmetrical determinant 

■^ik ~ -^kii 

for is got by suppressing the row and IP column, while 

Ajy is got by suppressing the IP row and column, thus these 

determinants are of the same nature as P and Q, and are therefore 

equal. Thus the determinant of the reciprocal system is also 

symmetrical. If A is the determinant of the system 

4.A ^ 
da^ 

= 2A 

But 
da,~ 

In a symmetrical determinant A^^ and the like are still sym¬ 

metrical determinants. 

7. If in Art. 5 

we see that 

P = 

^ik ~ ^ki> 

— %p ={-irQ, 

m being the order of the minors. Thus if m is even 

P=Q, 
hut if m is odd P = — Q. 

8. The calculation of skew determinants reduces to that of 

skew symmetrical determinants, which we shall therefore now 

consider. A skew symmetrical determinant of odd order vanishes, 

for if we multiply each row by — 1, since a.,^ = — this changes 

the rows into columns, which does not alter the value of the deter¬ 

minant. 

Hence, if n he its order, 

A={- irA; 
and hence ^ = 0 if n is odd. 
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The minor differs from by the sign of every element; 
hence 

Thus = A^^ if n is odd, but = — -4^ if w is even. 

Thus the reciprocal system is skew if n is even, but symmetri¬ 

cal if n is odd. 

is a skew symmetrical determinant of order n—1, and 

hence vanishes if w is even. 

We have 
dA 
da,,. 

= A. 

= ^A^ if* n is even 

== 0 if 71 is odd. 

9. A skew symmetrical determinant of even order is a com¬ 

plete square. 

For if ^ = I I 

is the determinant, since is a skew symmetrical determinant of 

odd order it vanishes. Hence (v. 7), if is the complement 

of in 

= 0, or = 

I ^}ck 
since (Art. 8). 

Now by (ill. 24) if we expand accordiog to products of elements 

in the first row and first column, since = 0 

where i, h take the values 2, 3 ... n\ 

or 

= {2eiuN/a„}’. 

Thus A is the square of a linear function of the elements of a 

row. Now is a determinant of order w — 2, which is even if 7i 
is even. Thus a skew symmetrical determinant of order n will 
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be the square of a rational function of its elements if one of 

order w — 2 is so. But when w = 2, 

0. =<■ 

Thus skew symmetrical determinants of orders 4, 6...2r are 

squares of rational functions of their elements. 

10. Since if w = 2 the square root contains one term, when 

w = 4 the square root will contain 3, when w = G it will contain 

5.3 terms, and so on. Hence a skew symmetrical determinant of 

even order n is the square of an aggregate of 

1.3.5...W-1 

terms, each consisting of the product of terms of A. 

In particular 0^34 • • • is a term of JA, for 

(a«a34 ••• “n-J' = (- 

11. This function JA is of importance in analysis, and has 

been called a Pfaffian by Prof. Cayley on account of the use made 

of it by Jacobi in his discussion of Pfaff’s problem. 

That value oi J A which contains ai2«s4-as first term 

with positive sign will be denoted by 

P=[l,2...n]. 

The remaining terms of P are got from the first term, 

®12^S4 • • • ^n-\n> 
by interchanging all the suffixes 2, 3 ... n in all possible ways, and 

giving a sign corresponding to the number of inversions. Since 

= — ^ki if is possible to effect the interchange in such a way that 

all the terms are positive. 

The Pfaffian changes sign on interchanging only two suffixes 

^ and k. For if we interchange i and k in the determinant, this 

interchanges the and rows as well as the and columns, 

thus the value of the determinant remains unchanged. If P^ is 

the new value of P, 

Hence 

P,‘ = P\ 

P4 = ± P. 
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To determine which sign we are to take, let us consider the aggre¬ 

gate of terms which contain a^. Then only contains terms 

whose suffixes are independent of i and k. The corresponding 

aggregate for is 

^ki Piky 
which,.in consequence of the relation — a^ , proves that 

p,=-p. 

12. The minor is also a skew symmetrical determinant. 

We shall shew that 

n/“« = (-1)‘ [2, • ■ - 1, *■ +1, • • • «]. 

or with ^ — 2 cyclical interchanges 

= + 2 ^ —1]. 

Since 

it follows that the terms of the product are either equal 

to those of , or equal with opposite signs. 

Now the product 

(— ly'^^p ... ^ — 1, f + 1... [2 ... A; — 1, A; + 1 ... ?i] 

and the determinant 

a,. = a„ (-1)-, 

^i-12 • • • *-l y k+l • • ' 

®i+12 • • • ^i+1 )fc-l y ^i+1 k+l • •' 

by the same number of interchanges of two suffixes, become respect¬ 

ively 
[A;, ^, q, r, s ...u, v] [p, q,ryS...Vy t] 

and 

^kpy ^kqy ^kr ^ki 

^jpqy ^pr ^pi 

I CLvpy (^vqy ••• | 

And the term 

^kp^qr • • • • ^pq^rt • • • ^vi 

of the product agrees in sign with the first term of the determinant 

^kp^q^qr 

whence the theorem follows. 
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13. Since we have shewn in Art. 9 that 

ijA. — (Xj2 V^22 "h ^13 V^*^33 "i" • • • "h > 

it follows that 

[1, 2...7i] = aj2[3... w] + aj3[4... n, 2] + ... + ... ?i - 1] ; 

a relation which enables us to determine Pfaffians of order n from 

those of order — 2. 

Observe that after we have selected the suffix 1, the others are 
written cyclically. Hence 

[1, 2] = a, 

[1, 2, 8, 4] = 

[1, 2, 3, 4, 5, G] = a,3 [8,4, 5, 6] + a,3 [4, 5, 6, 2] + a,, [5, G, 2, 8] 
+ a,3[6, 2, 8, 4] + a,3[2, 3,4,5] 

= 

+ (Xj3C!’^(Xg2 "t" ^13^46 ^25 "b ^13^42^56 

+ «U«66«23 + «14«62«36 + «U«53^^62 

"b ^16^62 ^34 "b ^16^63 ^42 "b ^15^64 ^23 

"b ^16^23 ^45 "b ^16^24^53 "b ^16 ^25 ^34* 
In particular 

0, a, —h, c = (ad +be + cff. 

- a, 0, /, e 

6, -/, 0, 

— c, — e, — (?, 0 

14. In a skew symmetrical determinant of even order, 

vanishes, being a skew symmetrical determinant of odd order. 

But (Art. 8), 
dA 
da,. 

- 1 ^ 
"" da. 

[l,2...7ir 

Now 

P= [1, 2 1)'-’ [i, 1... i-1, i+ 1 ... n] 

=(-irK[2...i-i,i+!...«]+... 

+ a„(-l)*-[l, 2...t'-l, t+1 ...^•-l A:+ 
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hence A.^ = (- [1, 2 ... w] {lA;}, 

where {lA;} is the Pfaffian got by omitting ^ and k in [1, 2 ... ti]. 

15. In a skew symmetrical determinant of odd order is a 

skew symmetrical determinant of even order, and is hence the 

square of a Pfaffian; 

viz. [1 ... ^ — 1, 1 ... 

V^,= (-ir [l...t-l,^+l...n] 

= [l+ 1 ... 71, 1 ... ^ — 1]. 

Also, since A =0, 

Hence = [^ +1 ... 71, 1... ^ — 1] [A; + 1... ti, 1... A; — 1]. 

16. The result of bordering a skew symmetrical determinant 

is also of interest. The result assumes different forms accord¬ 

ing as the determinant which we border is of odd or even order. 

Let the original skew symmetrical determinant be 

I ^ik !» 

and let the bordered determinant be 

0^a/3i O^aij ^03 ••• 

05'u3> ^12’ ^13 

®2/3> ®21» ^22’ ^23 ••• 

®31» ®32» ®33 ••• 

By Cauchy’s theorem (iii. 24) 

D = Gap A - Sa«i akpA^j^, 

Now, if A is of odd order it vanishes, and 

A^=\i^l...n, l ...^-l] [A; + l ...71, 1 ...^’-l]; 

hence, if we suppose that a^k = — a^/s, 

A = ^Gaitt^k p+ 1 ••• w, 1 ... ^ — 1] [A; +1 ..-71, 1... A;— 1] 

= (aai[2, 8 ... 7i] + ...) (a^i [2, 8 ... n] + ...) 

= [a, 1,2...71] [A 1,2...71], 
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where in the Pfaffians such expressions as a^, which do not 

occur in the determinant are supposed to mean — ttai, —dkp- 

But if A is of even order, 

[1, 2 ... + Sttai a^k (— [1,2... ?i] (Art. 14) 

= [1, 2...n] [or, A 1, 2...71]. 

17. We have hitherto treated of skew symmetrical determi¬ 

nants : it is easy to reduce to these the calculation of skew deter¬ 

minants. Namely, by ill. 23, 

D' = D + la„D, + 'Za^a^I)^+ ... + ... a„„, 

where B is what B' becomes when all the diagonal elements vanish. 

B^ is what the coefficient of in B' becomes when the diagonal 

elements vanish; B^ the coefficient of in B' with the elements 

in the leading diagonal zeros, and so on. 

If all the elements in the leading diagonal are equal to x we 

can write this 

D' = a;” + SD, + X A + • • • + + • • • 

Where B^ is a minor of order m got by suppressing n — m rows 

and columns which meet in a diagonal element, the other diagonal 

elements being put zero, the summation extends to all m-ads in n. 

If m is odd, B^ vanishes, and if m is even it is a complete 

square. 

Thus, the elements being skew. 

a;. ®12> «13 
= a?+ x {a\^ + a\, + 

X, 
®23 

X 

X, «12» «13» + a\ + a\ + J 

®21» a;. ®23» «24 + {a^a^ + a^+ 

®32» X, 
®34 

«42» ®43» X 

18. We can a .pply this last theorem to prove Euler’s theorem 

concerning the product of two numbers, each of which is the sum 
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of four squares. Namely, we have 

a. h, C, d = {a^ + b^ + c^ + dy, 

-h, a, -d, c 

- c, d, a, -b 

-d, — c. h, a 

r, s = {p^ + f/ + r^+ sy. 

-s, r 

- n s, P> - ? 

- s, — P 
Now multiply these two determinants by rows, then if we 

write 
A=ap + hq-\-cr-\-ds, B= — aq + hp—cs-\-dr, 

C = — ar -\-hs cp — dq, D = — as — hr + cq dp^ 

we get a skew determinant of the same form as the other two, 

whose value is 

whence 

{a^ + h'^+c^ + dr){p^ + q^ + r^-\-s'^) = A^ + B'^+G^+If. 

If we were to effect the multiplication by rows and columns we 

should get another form of the same theorem; by permutating the 

rows and columns we get still further representations of the way 

in which the product of two numbers, each of which is the sum of 

four squares, can be represented as the sum of four squares. The 

total number of different ways is 48. The product of n numbers, 

each of which consists of the sum of four squares, can be repre¬ 

sented as the sum of four squares in 48”"^ different ways. 

19. We have seen that the square of any determinant is a 

symmetrical determinant (Art. 2). Cayley and Brioschi have 

shewn independently that the square of a determinant of even 

order can be represented by a skew symmetrical determinant of 

even order. 

The process of the latter is as follows : We have 

A = = ^12 » 
— a^j 

- «1«-1 

®21» «22- • • ®2n-l> «2n 
a^. 

••«2n» - «2n-l 

«n2 «nn ««2» -«nl' ••• “ ®nn-l 
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Multiply these two equal determinants together by rows, and we 

obtain: 
A^ = 0, ^12’ ^13 ••• Li 

^23 ••• hn 

where 

L = “ ®r2®«l + ®r3®« 

then Z = 0, L + L=0- 

Thus is represented as a skew symmetrical determinant. 

It follows that A can be represented as a Pfaffian of the functions 1. 
Jf n = 4, for example, 

a,, ... a. 

— 42^34+^13^42 + ^14 43- 

The sign is determined by making the sign of a single term in the 

determinant and Pfaffian agree. 

If instead of interchanging columns, we interchanged rows, we 

should get another independent representation of the determinant 

as a Pfaffian. 

20. A third class of determinants are those of the form 

D = a,, U-j, .. 

U'j, Ug, a, .. • ®n+l 

^*3> '• ®n+2 

®«+l> ®n+2’ •• ®2i»- 

where all the elements in a line at right angles to the leading 

diagonal are the same. If the elements had been written with 

double suffixes we should have had the relation 

Clpq — (X- 

Such determinants have been called orthosymmetrical. Their 

most important property is that we can replace the elements by 

differences of a^. 
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For if we operate on the rows as we did in Chap. Ii. 5 (iv), if 

t>
 

Ctj., &c. 

... 

Aa^, ... Aa. 

A\, 

<
 ... AX 

A">, A“-‘a„ ... A“-'a, 

Now repeat the same series of operations on the columns, 

beginning at the last, then 

D = a,, AUj, ... A”-^a, 

Aa„ AX. ... AX 

AX. ... 

A”-'a.. AX, ... 

An important example of this class of determinants is that 

where is a function of h of the degree in k, whose highest 

term has coefficient unity, the quantities a^... form an arith¬ 

metic series of the order. If m = n — \ all the elements 

below the second diagonal vanish, while all those in it are equal 

to (tz — 1)!, whence the value of the determinant is 

n (w -1) 

(-1) 2 ((»-i)!r. 

If m is less than n—1 the determinant vanishes. 

21. The determinant of order r + I, 

^JP+2 ••• 

(m+1),, (m + l),„ ... (m + 1)^ 

(m + 2)y, (m+2),^,. (m+2),^, ... (m+2^„^ > 

where 

(m + r\, (m + (m + r)^ ... (m+ r), 

m(m — I) ... (m—p + 1) 

^ p 2 ^ ’ 

though not orthosymmetrical, is of a similar nature; let us call it 

F_ 
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Divide its first row by m, the second by m +1,... its (r + by 

m + r. Then multiply the first column by p, the second by p -I-1,... 

the last by p + r. Then 

TT m(m + l) ... (m + r) 

+ ... (p+r) ^ 

(m + r-l),_,, (m + r-1), ... (m + r-1)^^ 

or, if we multiply numerator and denominator of the fraction by 

(^ + 1)1, 

Y _ 4- -p- 

Thus we obtain a series of equations by giving to m and p 

different values in this 

V = (‘^'h ^)r+l XT' 

Now Ym-p.a is the value of the last determinant in ll. 5, when we 

write m—p for m and 1 for d. Hence its value is unity, which 

gives, when we multiply the above equations together and cancel 

like factors, 

= (m + r -1),^^... (m + r - p + 1),^^ 

Another expression can be obtained for the determinant by 

dividing the first row by m_p, the second by (m + l)_p,... the last by 

(m + r)p. Then multiply the first column by p^, the second by 

(p + l)j, the last by (p + r)^; the transformation gives 

Y _ (m + l)j, (m + 2)^ ... (m + 

Pp(P+'^)p(P + ^)v— {p + '>')p ' 

A remarkable special case of the first form is when p = 1, the value 

of the determinant being (m + i.e. the last element in its lead¬ 

ing diagonal. 
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22. If in the determinant of Art. 20 

(c+ fc + m) (c + ^4 m —1) ■■■ (c+/;+l) 

1 . 2 ... m 

then if m=n—l, A" = 1, and we have 

(c + n-l)_„ (c+ «)„., ... (c4-2»i-2).., 
(c4 (C4?i4-1)„.. ... (c4 2rt-l)._, 

<tr4'2re^ 2)^, (c 4 2» -1)„.,... (o 4- 3« - 3)„., 

23. Another class of determinants are those of the form 

D= a,, a, ... a„ 

... 

®n-l» ••• ®n-2 ’ 

» ttg . . . 

where the element in the leading diagonal is always a^, and the 

rest of the row is filled up with in cyclical order. 

The peculiar property of this determinant is that it divides by 

Uj + a^(o + ^3 + ... + a)”"S 
where w is a root of the equation a;" = 1. 

For if A^... are the complements of the elements of 

the first row of this determinant we have (ill. 11) 

ttjAg + ^2^3 + ...=0 

Uj An + UgAj + ... + An_i - 0 

Now consider the product 

(otj + a^(t} + (1^(0^ + ... + a„(w" (Aj-p AgO) ^ + AgO) “ + ... + A^co 

The coefiicient of is 

A^a^ + AgCt^i + ... + Ana^t-i- 

if k is equal to unity this is equal to D, by the first of equations 

(1), but if k is not unity it vanishes by one of the other equations. 

Thus D divides by 

Uj + + ... + Gn(w” ^ 

s. 6 
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Hence 

D = (ttj + 0^2... + a„) n (ttj + ttg (w + 0^3+ ... + a„(w" ^), 

where w is one of the roots of the equation a;" — 1 = 0, unity 

excepted. 

24. Another elegant demonstration of the theorem of the 

preceding article is the following. If a)^, •••<«„ are the n roots 

of unity let 

P = 1, (Wj, (Wj ... (Wj" 

1, Wj, 6)/ ... 

1. 
Then if we write 

i)P = 

+ 

0)" = !, 

••• 

("i)< ••• 

("i). ... 

whence 

= F4>{o)^)4>((o^...4>(o)^), 

25. Mr Glaisher has shewn that a determinant, such as that 

in Art. 23, of order 2m, can be expressed as a similar determinant 

Namely 

•••«2n 
= 

A. A- 

• • • ®2n-l 

^2n-] L» ®2n • * * ®2«-2 

Ag, Ag . 

«3 ...a, 

^■=“, + Os-" -OsO*. 

^s^OsOl'OjOj + OlOs ••• -O.Os. 

= “sr-, “l - “s + ^Sr-S Os ''' “ “sr “2 

where 
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For the first determinant 

83 

= n (ttj + a^(o + 0^3+ ... + 

0) being a root of unity ; and since for every root o) there is a 

root — CO, this 

= U(A^+Ay + A^co*+.,. + A^co^’^-^), 

which product is equal to the second determinant. For the 

roots of unity being denoted by ± 1, ± ± Wg... + the n*** 

roots of unity are 1, co^^, co^ ... co^^^. 

For example if ti = 2 

B = — lf — -k- 2ac, 

and the value of the determinant is 

a* — h^ + G^ — d* — 2aV + 2h^d^ — 4<a^hd + Ab^ac — ^c^hd + 4cf ac. 

26. If in the determinant of Art. 23 we suppose 

" (r- 1)! ■'■ (n + r-1)! ■*■ (2^r+r^^! ■'■ ■ ■ ■ 

= 6*11 (ttj + (XgCt) -p ci^co^ + ... 4- a^co”^ 

= e* n €"•* 

— gjr(l+w,+W2+...+wn-i) 

= 1. 

27. Determinants whose elements are binomial coefficients 

have been discussed with great minuteness by v. Zeipel, who has 

given an immense number of theorems relating to this class of 

determinants. One or tw’o of these w^e shall now consider. 

6—2 
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The value of the determinant 

n, qm^ ... 

(m+l)„ 71+1, (p+l)(7/i+l\, (g'+l)(7/i + l)2...(^+l)(7/i+lX^j 

(m+2\,n-\-2, {p+2)(m+2)^, {q + 2)(m + 2X...{t + 2)(m + 2)^^ 

[m +A;)j^, n + k, {p + k){m + k)^, (g'+ k) {m + k)^...{t + k)(m +k)^^ 

is {m — n) (m —p — l)(m — q— 2) ... (m — t—k + 1). 

We must first shew that the determinant vanishes when m is equal 

to any one of the quantities 

71, ^ + 1, q-\-2 ... t+k — l. 

First let m = n, then the determinant is 

7Wj,, 7/1, pm^, qm^ 

(m + 1)^, 771+1, (_p + l)(7?i +l)j, (g'+l) (772+1)2... 

(ni + k)^, m + k, {p + k)(m + k\, {q + k) {m +k\ ... 

If we subtract the second column, multiplied by p, from the third 

we see that the determinant is independent of p. Do this, and 

divide the first row by 771, the second by 772 +1, the third by 

772 + 2 ..., then multiply the first column by k, the fourth by 2, the 

fifth by 8 ..., then the determinant reduces to the product of 

772 (772 + 1) (772 + 2) ... (772 + k) 
l72~7Zk 

and the determinant 

(772 -l)^j, 1, 0, q(m-l)^, r (772-1)2 

+ (r+1)7722 

(772 + A;-l)^j, 1, k, {q + k) {m+ k — 1)^, (r + k) {m + k-... 

Multiply the second column by g' (772 — 1)^, the third by 

q (772 - 1),+ ! . 772j, 

and subtract their sum from the fourth column^ and we get the ne'vv 
determinant 
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1, 0, 0, r(m-l)2 

1, 1, 0, {r+l)m^ 

(m + l)^i, 1,2, 1, (r + 2)(m + l)2 

(m-f 1, 

In this determinant multiply the second column by r (m— 1)2, the 

third by r (m — l)j-f 1. Wg, the fourth by r (m —1)^ +2 .m^, and 

subtract the sum of their elements so multiplied from the elements 

of the fifth column, and proceed in a similar way with the altered 

determinant. Finally we reduce the determinant to the product of 

a finite number of factors and 

1,0, 0...0, 0 

1,1, 0...0, 0 

(m + lV„ 1,2, 1...0, 0 

(m+A;-l)^j, 1, k^...\_^, k^^ 

In this determinant multiply the second column by (m —1)^^^, 

the third by (m — l)i_2, the fourth by (m —1)^.3, &c., and subtract 

their sum from the elements of the first column, then each element 

of the first column, and consequently the determinant vanishes. 

Hence our determinant divides by m — n. Similarly we can 

shew that it divides by each of the other factors, hence it is 

equal to 

G(m — n) (m —p — — — 

To find the value of G put 

n=p=q= ... = < = 0; 

then we get 

1, (?/i+lX, (m+l)2 ... 

2, 2(m+2)j, 2(m + 2)2... 

3, 3(m + 3X, 3(m + 3)2... 

kj k (m + k)^, k{m + k)^... 

= Gm (m — 1) ... (m — A; + 1). 
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But the determinant = A;! as we see by putting (A = 1 in the last 

determinant of ll. 5. Hence 

(7=1; 

thus the theorem is proved. 

28. The determinant 

I n, ... ... um^_^ I 

(m 1)^, 71 + 1, (^ + 1) (t/i + l)j. (it + 1) (t/i + l)^j 

{m + 1c\y n+h, {p + k) . {u-\-k){m-\- k)^^ 

(771 + r)j„ n + r, (^ + r) (tti + r)^. (it + r) (tti + r)^i 

is equal to the product of 

(A; +1) (A; + 2) ... r 

and 

771*, 7t, pm^, ... 
(m + 1)*, 7t + 1, (^ + 1) (77t + l)j ... (g' + 1) (m + l)*_j 

(m + A;)*, 7t + A;, (^ + A;) (tti + A;)^ ... (q + k) (mi- A;)*_j 

That is to say, is independent of the r — k quantities s, ... it. 

To this determinant apply the operations of ll. 5. iv. Then 

in place of any element P in the row we must write 

A^^P. 

Then in the first column every element after the (k + 1)"* vanishes, 

while in each of the others every element below the leading 

diagonal vanishes, the element in the leading diagonal of the P** 

column being (^“ 1). 

Hence if we expand the determinant by Laplace’s theorem, 

according to minors of the first k columns it reduces to 

(A;+1) (A;+2) ... r m*, n, pm^ ... qmj^^ 

1> l>»»o+(»»+l)o] ••• 
2(m + l)„ 

I 0, 0, 0, 



27—29.] DETERMINANTS OF SPECIAL FOIUIS. 87 

which proves the theorem. For the last determinant is the result of 

operating, as in ii. 5.iv., on the determinant (1). The determinant 

(1) is known by Art. 27, and hence we know the value of the new 

determinant. 

20. Next let us consider 

(m+lX, (n+l)(m + l)^, (p+1)(m+1)^, ... 

' (»» + »•).. + (p + r){m + r)^^... 

where k has any value from d to d-{-r — l inclusive. 

Divide the rows by 

m^, (m+1)^ ... (m + r)^ 

respectively, and multiply the columns by 

k^, 1, {d+\\, (d + 2),... 

Then our determinant is equal to 

+ + ••• l)r-, 

multiplied by the determinant 

n, p(m-d)i 

{m — d+ n + 1, (;>+ l)(m —d+1), ... 
> 

{m-d + r).j^, n + r,{p + r) {m-d + r\ ... 

which by the preceding articles is equal to 

{Ic — d + 1) (k — d+ 2)... r {m — d — n) {m — d — p — 1) 

{m-d-q-2) ... (2), 

being independent of the last r-k-t-d, of the quantities n,p...u. 

The determinant we started with is equal to the product of (1) 

and (2). 

um^ 
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80. In the determinant of the last article let 

n=p= ... 

>—
1 II II II II 

then if we multiply both sides by 2’’ 

(m+l),. 3 (m + l)j, 3(m+l), ... 3(m + lX 

(™ + 2),, 5 (m+2)j, 5{m + 2)^ 5 (m + 2)^ 

I (m + r)j, (2r- + l) (m + r)j, (2r+1) (m + r)^... (2r- + l) (m + r)^ I 

= 2’’ m (m + 1) ... (m + r). 

Divide both sides by m (m + 1)... (m + r), and then multiply both 
sides by r !, thus 

1, 1, (m-l),, ... (m-lL, 

1, 3, STOj, ... 3(m)^, 

1, 5, 6(m + l),... o{m, + \)^^ 

Hence, changing m — 1 into m, if we write 

1, 1, m,, ... 

1, (m+l\, (m+1), ... (m+lX 

i, 1, (m+2\, (m + 2)2... (m + 2^ 

we have by Wallis' theorem 

Lim. (2r + lX., = |, 

= 2.4.6 ... 2r. 

when r, and therefore the order of the determinant, is infinite. 



CHAPTER VII. 

ON CUBIC DETERMINANTS AND DETERMINANTS WITH MULTIPLE 

SUFFIXES. 

1. Just as when elements are given we can arrange them 

in the form of a square, so when elements are given we can 

arrange them in the form of a cube. Then we can indicate the 

position of the elements by means of three suffixes. The elements 

will lie in three sets of parallel planes; supposing the cube contain¬ 

ing the elements to stand on a table with one face towards us, we 

may for convenience call those planes parallel to the face on which 

the cube rests strata, those parallel to the face in front of us 

planes, and the perpendicular planes sections. 

2. An element of such an array will be denoted by 

where the suffixes mean that it stands in the stratum, plane, 

and section. 

The set of elements in the leading diagonal will be 

^111^222 ••• ®nnn* 

From this we can form a function analogous to a determinant, and 

hence called a cubic determinant, by the following process. 

From the leading term ... we form n\ terms by 

writing for the series of third suffixes all possible permutations of 

1, 2 ... n, giving to each of these terms a sign corresponding to 

the class of the permutation. Then from each of the terms so 

obtained we derive n\ new terms by writing for the series of 

second suffixes all possible permutations of I, 2 ... n, giving to each 

new term, relatively to the term from which it is derived, the sign 
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corresponding to the class of the permutation. The sum of all 

these {n !j* terms is called a cubic determinant, and is denoted by 

or by ^’ = 1. 2 ... n). 

3. Just as an ordinary determinant can be represented as the 

product of n alternate numbers, so a cubic determinant can be 

represented as the product of n factors lineo-linear in two sets of 

alternate units. 

If ^2... ... e^are two independent sets of alternate 

units, then the determinant of Art. 2 is equal to the product 

n + ... + 
+ “mfA + VA + • • • + A®. ,. , „ 

+ AA + + • • • + 

For if we consider any term of the product, it will vanish if it 

contains two e’s or two e’s with the same suffix, i.e. if two as with 

like second or third suffix occur in the term, which ensures that 

all terms which do not belong to the determinant vanish. Thus 

every term which does not vanish contains some permutation of 

the units e^, ... e„ and *•* ^ factor, and if the units 

be brought to this order the sign of the term will be (—1)'*'^*'; 

where ya is the number of inversions in the e’s, i.e. in the second 

suffixes of the term, and v the like number for the e’s or third 

suffixes. That is to say each term of the product is a term of the 

determinant with its proper sign. Thus the determinant is cor¬ 

rectly represented by the product. 

Just as an ordinary determinant is the product of linear 

functions of the elements of a row, a cubic determinant is the 

product of Hnear factors of the elements of a stratum. 

By means of this representation we can deduce the properties 

of cubic determinants. 

4. The sign of the determinant is changed if we interchange 

two planes or sections. 

For interchanging two planes is the same thing as interchang¬ 

ing two e’s, and interchanging two sections the same as inter- 
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changing two e’s. Either of these changes alters the sign of every 

term, and therefore of the whole determinant. 

5. Interchanging two strata does not alter the sign of the 

determinant. 

For we can represent the determinant by either of the two 

products 

n(c„e.+ c„€,+ ... +Ci„f„) 

where 6^ = a,.,e, + + ... + 

= + ... +a^e„. 

From the first form we see that the determinant, on inter¬ 

changing two strata, suffers a change of sign as being the product 

of alternate numbers belonging to the system e; from the second 

we see that it also suffers a change of sign as being the product of 

alternate numbers belonging to the system e. Thus on inter¬ 

changing two strata the determinant undergoes two changes of 

sign, and hence remains unaltered. 

6. A cubic determinant of order n is the- sum of n! ordinary 

determinants, each of order n. 

For as in Art. o 

^ = n(c„e, + c^e,+...+c,„0 

where has the same meaning as in Art. 5. Hence, by i. 19,* 

^=K\. 

Thus the cubic determinant is equal to an ordinary determi¬ 

nant of the same order, whose elements are alternate numbers. 

To split up this determinant into others with simple elements we 

must take a partial column from each column of the determinant, 

but if we take a partial column in the place from one column 

we cannot take a partial column in the p^ place from any other 

column, for then would occur twice, and the corresponding deter¬ 

minant must vanish. Hence each selection of partial columns 

must be a permutation of 1, 2 ... n, there are n! such selections, 

and as many determinants with simple elements. 
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Thus A='Z\a^^\, 

where the determinant on the right is an ordinary determinant; 

k is put in brackets to remind us that though it varies from one 

column to another, in the same determinant it remains fixed. 

This theorem is also an obvious consequence of Art. 2. 

7. If in the preceding article we suppose all the first suffixes 

to be the same, all the determinants on the right would become 

alike, only their columns being permutated, and each determinant 

would have the sign corresponding to that permutation, hence 

suppressing the first suffixes altogether, the cubic determinant is 

now equal to 

(«OI“*l(i. ^ = 1. 2 ... ra). 

This then is the value of the cubic determinant whose strata 

consist of the determinant 

repeated n times. 

8. The product of two ordinary determinants, each of order w, 

is a cubic determinant of order n. 

Let A = \a^\ = A^A^...A^, 

£ = |6J = i?A 

where A, = + ... + 

Bi = hA + + • • • + ■ 

the systems of units e and e being independent. 

Then AB = UA^^ 

= n + • • • + «nW. 

+. 

+ “,AfA+“iAV2+ - + aAf„«.). 
Now if c^z=aA> 

the product on the right is the cubic determinant of the elements 

Thus the theorem is proved. - 
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By multiplying and B. together we avoided any inversion 

of the J-’s and B's among themselves. If we allow for the conse¬ 

quent changes of sign we can have as many such inversions as we 

please, and so vary the form of the cubic determinant which 

represents the product. 

9. The product of a cubic determinant A, whose elements 

are and of an ordinary determinant B, whose elements are 

6^, is a cubic determinant (7, whose elements are where 

Cut=K +&/,“« + ••• + K • 

Or we treat each stratum of A as if it were an ordinary determinant 

to be multiplied by the resulting strata give G. 

For 0 = n +... + c„„6,e„ 

+ + CmVe + • • • + 
+ ... 
+ c,««»«!+ CM6„e,+ ... + c,.„e.e„) 

= n + • • • 

+ + • • • 

+.) j 

■where + ...+b^e,. 

Since the alternate numbers Bj follow the same laws as units, 

this last product is a representation of the cubic determinant A by 

means of the units e and B. Thus 

= AB. 

10. It is now an obvious step to consider those functions 

formed of letters with more than three suffixes analogously to 

determinants, though when we take elements with more than 

three suffixes we cease to be able to picture to ourselves their 

arrangement topographically as we can in the case of elements 

with one, two or three suffixes. We can, however, conceive a set 

of elements with p suffixes such as 

'if in number, to be arranged in p sets of rectangular planes in 

a space of p dimensions, and forming a rectangular parallelo- 



94 THEORY OF DETERMINANTS. [chap. VII. 

schemon of p dimensions. (Cf. SchMi, Quarterly Jour. II. p. 278.) 

The elements which have all suffixes the same, except lie in 

the same line, those which have all suffixes the same, with the 

exception of i and lie in the same plane, ... those which have 

only I in common lie in a rectangular paralleloschemon of p — 1 

dimensions. 

The product of the elements 

is called the leading term of the determinant of the p^^ class, 

which is formed by keeping the first suffixes unaltered, and writ¬ 

ing for each set of the other suffixes all possible permutations of 

1, 2 ... ?i. To each term so obtained we give the sign corresponding 

to the sum of the number of inversions in the p — 1 sets of variable 

suffixes. 

The whole number of terms is {n !}^^ 

11. The determinant of the class can be represented as a 

product of linear factors of the elements which lie in the same 

paralleloschemon of ^ — 1 dimensions. 

Vi, V,---Vn 

be p — 1 sets of alternate units ; it is plain from reasoning similar 

to that in Art. 3, that the function 

(where the sum is formed by giving to each of the suffixes j, k ...I 

all values from 1 to ?i, and then forming the product of such sums 

for the values 1, 2 ... ri of i) is a determinant of the class and 

order, such as we have defined in Art. 10. 

12. This definition is strictly analogous to those for deter¬ 

minants of the second and third class. A determinant of the 

second class is the product of linear functions of the elements of a 

row, one of the third class the product of n factors linear in the 

elements of a stratum. Here the determinant of the p^ class is 

the product of n factors linear in the elements of a parallelo¬ 

schemon of p — 1 dimensions. 
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13. It is clear that by the interchange of any two suffixes, 

except the first, the determinant changes sign. Also since the 

factors of the determinant can be written as linear expressions of 

each of the p — 1 sets of alternate units, it follows by the inter¬ 

change of two first suffixes the determinant undergoes p — \ 

changes of sign. Thus the determinant remains unaltered or 

changes sign according as its class is odd or even. 

14. We have kept the first suffixes in their natural order. It 

is however indifferent which set of suffixes is retained fixed. If 

the class of the determinant is odd, it is perhaps more symmetrical 

to keep the middle suffix unaltered; the determinant is however 

not the same as before. 

15. The product of a cubic determinant A, whose elements 

are and of an ordinary determinant B, whose elements are 

can be represented as a determinant of the fourth class C, whose 

elements are given by 

For ^ = n (o,„ + ... + 

+ amVi +.). 

B=n (6„r,^ + + ... + 
Thus clearly 

(Int j, Jc, Z = 1, 2 ... n) 

(Inn { = 1, 2 ... n) 

which proves the theorem. 

AB=n(Zc^,eje,r,,) 

16. The product of two cubic determinants A and B, whose 

elements are and both of order n, can be represented either 

as a determinant of the fifth class, whose elements are 

^ipqrt ^ipq^irtf 

or as a determinant of the fourth class, whose elements are 

given by 

(p = l, 2...n); 

the order of both determinants being n. 

The first part of the theorem is proved as follows: 

A = Y\.^(l^pq€p6^. 

(In S p,q = l,2...n\ in IT i=l, 2...71.) 
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(In 2 r, 5 = 1, 2 ... 71; in 11 i=\,2 ... n.) 

Thus AB = ns e^, 

ns ^ipgrt ^p^qjr ^8’ 

(In S p, q, r, s=ly 2 ...n ; in H ^*=1, 2...n.) 

Which by definition proves the theorem. 

For the second part of the theorem we have 

0='n.tc^eje^i],. 

Now the sum under the product sign 

= 2ejK£, + aj,B,+ ... + o^„B„l (j=l, 2...w), 

where B, = e, ij, + e, + ... + e, v, 

"h ^J»21 ^2^1 ^2*22 ^2^2 "h •*' ^PHn^sVn 

+ ... 

and if we write 

A, = e, + a,„e,+ ... + o,.,e. 

the sum becomes 

B^A.^ + B^^Ai^ + ... + B„A. 

The product of this has to be taken for all values of i. It 

must always be taken so that in each term we have the 

product for if two E?> are repeated the J:erm van¬ 

ishes. The value of this product is B. 

The remaining factors in the term are 

••• -^nrf 

whereg ... r is a permutation of I, 2 ... n. This is an ordinary 

determinant of class 2. Comparing this with Art. 6, we see that 

it is a term in the expansion of the cubic determinant A in a sum 

of determinants of class 2. All these terms occur in our product. 

Thus 

C=A.B. 

17. The following theorem regarding the product of two 

determinants of any class can be proved by the preceding 

methods. 
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The product of two determinants of classes p and g, whose 

elements are ^ and 6^ respectively, can be represented either 

as a determinant of class ^ + g — 1, whose elements are 

... luv...« “ ®i;... I ^iu...« > 

or as a determinant of class ^ + g — 2, whose elements are 

Ci-u,...., = {i= 1, 2 ... n), 

all the determinants being of order n, 

18. It is not difficult to see how the theorems with regard to 

determinants of the second class (i.e. ordinary determinants) can 

be extended to determinants of any other class. It is probable 

that determinants of higher class possess many properties peculiar 

to themselves, though as yet not many of these have been investi¬ 

gated. The complement of any element of a determinant is a deter¬ 

minant of the same class and next lower order. The extension of 

Laplace’s theorem would shew how a determinant of class p and 

order n. could be expanded in a series of products of pairs of deter¬ 

minants of class p and orders m and n — m. 

19. There is no difficulty in writing down the expansions of 

determinants of any required class or order. The number of terms 

however increases very rapidly. 

The following are the expansions of determinants of the second 

order, and classes 3 ,and 4 respectively : 

S ± (111)(222) = (111)(222)-(121)(212) + (122)(211) - (112)(221) 

S ± (1111) (2222) = (1111) (2222) - (1112) (2221) + (1212) (2121) 

- (1211) (2122) + (1122) (2211) - (1121) (2212) 

+ (1221) (2112) - (1222) (2111), 

while for the determinant of class 3 and order 3, 

:E ± (111) (222) (333) = (111) (222) (333) - (121) (212) (333) 

-(111) (232) (323)+ (131) (212) (323) 

. + (121) (232) (313) - (131) (222) (313) 

- (112) (221) (333)+ (122) (211) (333) 

+ (112) (231) (323) - (132) (211) (323) 

- (122) (231) (313) + (132) (221) (313) 

- (Ill) (223) (332) + (121) (213)(332) 

+ (111) (233) (322) - (131) (213) (322) 

- (121) (233) (312) + (131) (223) (312) 

+ (113) (221) (332) - (123) (211) (332) 

• 7 S. D. 
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- (113) (231) (322) + (133) (211) (322) 

+ (123) (231) (312) - (133) (221) (312) 

+ (112) (223) (331) -(122) (213) (331) 

- (112) (233) (321) + (132) (213) (321) 

+ (122) (233) (311) - (132) (223) (311) 

- (113) (222) (331) + (123) (212) (331) 

+ (113) (232) (321) - (133) (212) (321) 

- (123) (232) (311) + (133) (222) (311). 

20. We shall conclude this chapter with the following general 

theorems. 

A determinant of any class, all of whose elements are equal to 

a, except those in the leading diagonal which are equal to x, is 

equal to 
{n — 1) a] {x — a)”"^ 

n being the order of the determinant. 

We shall prove this for a cubic determinant, but the method is 

perfectly general. 

i) = n -f ae^e^ + ... 

+ ae^e^ + ae^e^ + ... 

+ ... q-ice.ej + ...) 

= Il{aEE' + (a? — a) 

where ... .^' = 6^ ++ ... +e„. 

Hence, since E and E' are alternate numbers, any term in 

which they occur more than once vanishes. • 

Hence B = (x — aY + a (x — a)""^ S [EE'He^eA 

ik = l, 2 ... ^'-1, ^ + l ... n); 

.*. B = {x — aY + na (x — a)”"^ 

= {a? + (w — 1) a] (x — aY~^; 

for Ee,... ... e„ = ... e„ 

= (-iy-\e^ ... 
and so E\ ... £„e,„ ... £„= ••• 

The last theorem of iir. 25 can also be extended to determi¬ 

nants of higher class, for a cubic deterrninant we may state it as 

follows: If all the elements in the stratum are equal to a^, with 

the exception of that which lies in the leading diagonal, whose 

value is x^, then the value of the determinant is 

/+2a/(‘^,) 
with the notation given in iii. 25. 



CHAPTER VIII. 

APPLICATIONS TO THE THEORY OF EQUATIONS AND OF 

ELIMINATION. 

1. If we have n linear equations between n quantities 

namely, 

«21 + ^22 ^2 + • • • + «2n = ^2 (1)* 

+ «„2^2 + ••• + ««n^« = '^«> 

the determinant A = \ a^\ is called the determinant of the 

system. If A does not vanish we can at once determine the 

variables. For if we multiply the above equations by A^^, A^... 

respectively and add, then all the terms on the left vanish, with 

the exception of those multiplying x^, which together give A (iii. 

11). Hence 

Ax^ = ‘u,A^^+v.^A^+(fe=l,2...n). 

The expression on the right is the expansion of the determinant, 

obtained by writing ... for the elements of the 

column. 

2. It is interesting to compare with this the solution by 

alternate numbers. 

Multiply the given system (1) by e^, e^...e^ and add; then if 

e,«, + +... + = y, 
we have 

A^x^ + A^x^+... + A^x^^V. 
7—2 
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Multiply both sides of this equation by A^... ... 

and we get 

A^... A^^Aj^^... A^A^x^=- A^... Aj^^Aj^^... A^U, 

or A^... A^x, = ^,... A,^^ UA^^... ^„, 

and writing the products of alternate numbers as determinants we 

get the same solution as before. 

3. If in the equations (1) the quantities u on the right 

vanish, we have the system of n homogeneous linear equations 

+ Vt + • • • <^in^n =u=0 (^ = 1, 2 ... 7l). 

We may regard these as equations to find — , — ... . 

Taking any w — 1 of the equations, by Art. 1 we can determine 

the ratios. These values, if the equations are consistent, must 

satisfy the remaining equation. This condition is 

A = 0. 

For if we multiply the equations by A^^y ... as before and 

add, we get 
® I = 0. 

If then the equations are to be satisfied by other than zero 

values of the variables we must have 

A=0. 

If this be true any one of the equations is a consequence of all 

the rest, viz. we have 

d" ^2-^2)k d" • • • d“ U^A^J^ — 0. 

Where the it’s now stand for the linear functions, that is to say, 

any one of the w’s is expressible linearly in terms of the remaining 

ones, provided the quantities A^^ do not all vanish. 

4. If the condition of the preceding paragraph holds we 

have 

For if we substitute the values x^=\AJ^ all the equations except 

the are satisfied by iii. II, and the A;*** is also true since' 

A=0. 
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5. Keturning again to the equations of Art. 1. Any new 

linear function v of the w’s can be expressed linearly in terms of 

the u's. 

For if v = + ... 

^1= + • • • + «A 

^n= + • • • + > 

we may regard these as w + 1 equations between the w + 1 quan¬ 

tities “1, aJj, iCg... 

Hence, by Art. 8, we must have 

h .. • K 
«U. 

®nl> ®n2 * • O^nn 

0, K \ • . K 
®I2 • 

^ni> ««2 • 

6. If we have between n variables a)^, ... o)^, the m equations 

V. + «i2®2 + - + ai«®„ = 0 

where m is greater than n. Then if these equations are to be true 

for other than zero values of the variables, if we take any n of 

them their determinant must vanish by Art. 8. 

This condition is represented by 

«12 •• 
= 0; 

«22 •• • ®2n 

®«12 •' 

which means that each of the system of determinants, got by 

selecting any n rows of elements from the array and forming 

a determinant with them, is to vanish. The expression on the left 

is frequently called a matrix. 
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7. The system of linear congruences 

(mod. p), 

••• + = nl 1 nn n n 

first considered by Gauss; has been solved as follows by Studnicka. 

Let A = I |, 

and let be the greatest common measure of the numbers 

’ ’ ’ ^nk’ 

Then, as in Art. 1, we have for all values of k from 1 to n, 

A 1 
— + • • • + “«^ J (mod. p). 
ift iJi 

The advantage of the rule is that if we observe that one of the 

minors of a column is unity, or if two of them are prime to each 

other, then, for that column, gj^ = 1. 

8. The solution of the system in Art. 1 assumes different 

forms according to the nature of the coefficients a^.' If 

a^— — aj^ and a^^ = 0, 

so that the determinant of the system is skew symmetrical; first, 

if n is even, if we multiply the equations by 

[2 A;+l ...9i]. [3 ^’ + l ...71, 1] ... 

[1 + l ...71-1], 

and add, the coefficient of is 

... k — 1, /j + 1 ... 7i] + [3 ... ^- 1, k+l ... n,l\ 

+ ... + [1... A; — 1, ^• + 1 ... 71 — 1] 

= -[A:, ^’ + l ...7i] = (-l)*[l, 2...71], 

while the coefficient of x^ is- 

— [7, 1 -1, A; -}-1 ... 77] = 0. 

Thus 

(-1)X[1, 2 ... 72] = 77j2 ... A:-l, ^’+l ... 77] 

+ 77^3... A;-l, A; + l ...77, 1]...H-77„[1 ^+1 ...77-1]. 

But if 77 is odd, then A = 0 (vi. 8) and x^, x^... x^m general 

are infinite, but bear fixed ratios to each other. If however 

or «, [2 ... n\ + «j[3 ... n, 1] + ... + k„[1, 2 ... n — l] = 0 

(vi. 15), one equation of the system is superfluous, and the system 

of the remaining equations can be solved as above. 
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9. In Art. 3 we have the first example of the process of 

elimination; namely, we have found a condition, independent of the 

variables, which must hold if a certain given number of equations 

are to exist between these variables. When r homogeneous equa¬ 

tions hold between r variable quantities, (or what is the same 

thing, r non-homogeneous equations between r — 1 quantities) it 

is always possible to establish an equation R = 0 between the co¬ 

efficients of these equations alone. Then li is called the resultant 

or eliminant of the system of equations. 

When the equations are two in number tke most direct process 

is Sylvester’s dialytic method. Let the two equations be 

0 = a^ + a^x-\-.a^x^+ ... + a^ar \ 

0 = + j .' 

If we multiply the first equation hy 1, x, of we get n — 1 new 

equations, and from the second by multiplying by 1, Xy X^... 

we get m - 1 new equations, viz. we have now the system 

0 = aQ + a^x + + ... 

0 = a^/c + a^x^ + ... 

0= a^a^+.., 

0 = b^-\- bjX+ h^x^+ ... 

0= b^x+b^af+.., 

0 = + ... 

of m + n equations satisfied by the same values of x as the given 

equations (1) and linear and homogeneous in the m + n quantities 

1, X, ... 

Hence, by Art. 8, the determinant of the system must 

vanish, or 
B = a,, a,. =0. 

. 

% . 

K’ h 

K h 
K 
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A determinant of order m + w. Since there are n rows of a’s, 

and m of 6’s, the resultant is of order n in the coefficients of the 

first equation, and of order m in the coefficients of the second. 

10. If the coefficients ... ... are 

functions of y and z of degrees 0, 1, 2 ..., it can be proved that 

the resultant is of order mn in y and z. This will be the case if 

every term in R has the sum of the complements of the suffixes 

equal to mn. 

If we change y and z into yt and zt respectively, the value of 

R is now 
R' = ... 

... 

bf, bf-\ bf? ... 

V. ... 

Observe that the separate elements and therefore each term of R' 

is multiplied by a power of t equal to the complement of the suffix. 

Now, multiply the first n rows by 

r-"... t, 1, 
and the last m by 

...t, 1. 

Then R' is multiplied by a power of t, whose exponent is 

m (m— 1) n{n — l) 

2 2 * 

But now the first column of R' divides by the second by 

and so on. Thus R' R is equal to a power of t whose 

exponent is 

(m + w) (w + 71 — 1) m{m — l) 71(77 —1)_ 
2 2 ^-mn. 

Thus every term in R' must divide by f‘”, which proves the 

theorem. Functions, such that the sum of the suffixes, or of their 

complements, of the elements in each term is constant, are some¬ 

times called isoharic, and the constant sum is called the weight. 

11. We may consider the question in another way. 

If <j)(x) = h^ + h^x + + ... + 

= K(x-ff,){x-^^ ... {x-^J (1) 
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is an equation whose roots are the function 

f(x) + + .,. + .(2) 

has n values corresponding to the different values of x given by (1). 

These n values are the roots of an equation of the degree, 

which we now proceed to find. Multiply the equations (1) and (2) 

by the same powers of x as in Art. 9, and we have the m-\-n 

equations 

0 = M + a^x^ + ... 

0= {% — u)x-{-a^ai^-\- ... 

{a^-u)x^+... 

0= + + ... 

0 = ^0^ + + •. . 

0= . 

Eliminating between these the quantities 

we get 

... a?, 1, 

a^—u.. 

K> K h •• 

6„. h •• 

= 0, 

an equation of the n® degree to find «, the roots of which are 

/(/3.), /(^.) •••/(^.)- ~ ■“'lU' 

The product of the roots being equal to the constant term 

(-1)”b:f (/8.)/G8J = (-1)“R, 

where R has the meaning in Art. 9. Thus 

In the same way we may shew that 

R = i- 1)”“ K) i> (a,) <#- W ... ^ (O 

if a, ... are the roots of (2). 
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12. If the two functions (j) and / of the preceding article are 

a function and its differential coefficient, then B is called the dis¬ 

criminant of the function, and its vanishing is the condition that 

the function should have equal roots. If 

f(x) = tto + + • • • + 

= a„ (a: - aj (a - aj ... (x- a„) 

f {x) = -f 2a^x + ... q- 

-/w 

Sa, ... 

2a^ ... 

... 

... 

having n rows of the first, and — 1 of the second kind. 

If we multiply the last row by 7i,.and subtract it from the 

this becomes 

0 ... 0, -nuo, - ... 0. 

Thus the determinant reduces into the product of by a 

determinant of order 2m — 2, which we shall call A. 

Also /(«,)= K-“2)(“,-«s) ••• K-O 

/' W = - “x) (»2 - «s) • • • («2 - a„) 

/' (“.) = (»»- “,) K - “J K - «») • • • : 

n(n-l) 

••• /'(«.)/'W -/'(O = (-1) ’ < - o 

where ?(«!... a„) means the product of the squares of the differ¬ 

ences of all the roots. Thus 

n(w-l) 

A = (-1) “ 

13. The artifice employed in eliminating x between two equa¬ 

tions may sometimes be employed for the case of more equations 

than two, as in the following examples due to Prof. Cayley. 
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Let x-\-y + z = 0y a, = z^=c; 

multiply the first equation by 1, yz, zx, xy, and reduce by means 

of the other three, then we get 

x+y + z=0 

xyz cy -\-hz=^0 

xyz cx -\-az = 0 

xyz-\-hx + ay =0, 
whence, eliminating xyz, x, y, z, we get • 

., 1, 1, 1 

1, ., c, h 

= 0. 

1, c, a 

1, h, a, . 

1 

Or if we multiply the equation by x, y, z, xyz, andi eliminate 

, yz, zx; xy, we get 
•, a, 1?, c 

a, ., 1, 1 

= 0. 

h, 1, 1 

c, 1, 1, . 

Again, if we are given the equations 

x + y + z = 0, x^ = a, f = h, z^ = c, 

if we multiply the first equation by 

■ X, y, z, fz^, 2^x\ xY> y'zx, z^xy, 

and reduce by the last three we can eliminate 

f, 2^, yz, zx, xy, xf^, y^x^, za^f 

between the resulting equations, giving 

1, * y y 1, 1, * > y 

1, 1, * i 1, * > y , 1, 1, 1, y i * y 

y c, h, * i ' j * y 1. y 

c, i a. i * i y * > 1, 

h. a. •, •, 1 

* y a. •, 1, 1 

* y •, * i * y 1,. * i 1 

y ' > C y 1, 1, • 

Other forms of the resultant can also be obtained. 
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14. The resultant of the quadric 

u = a^^x^-\- ... ... = 0... 

and of the n —1 linear equations * 

+C,,X,+ ...+ C,„®„ = 0 

Vi= + c,-iA + • • • + c^iA= 0 

can be readily expressed by determinants. 

(1). 

•(2) 

By Euler s theorem for homogeneous functions we can write 

the first equation in the form 

du du 
dx, dx^ .m- 

Then if in equation (3) we do not consider the variables implicitly 

contained in the differential coefficients, (1) and (2) being n 

equations, between x^...x^y (3) must be identical with 

Vi + W • • • + V. Vi = 0 .(4) 

by Art. 3. Equating coefficients in (3) and (4) we must have 

V«^I + + • • • + “i»®» = X,c„ + +... + 

V®i + “2A+-" +V®« = \c„ + X,c,,+ ... + X„_,c._„ 

V®i + + • • • + “«A = \Ci» + \ V + • • • + V, Vi» 

the equations (5) together with (2) form a system of 2n—l equa¬ 

tions between x^y x^... x^y \y\... hence their determinant 

must vanish by Art. 3. Thus 

= 0, 

®nn> ^In *•* ^n-ln 

C In 

I ^n-ll * * * ^n-ln I 

the blank space being filled with zeros. This result is due to 

Versluijs. and mean the same thing, viz. half the coefficieniJ 

of x^x,. 
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15. If we seek to solve the system of equations 

a? 4- y z= a a?* + = 6^ 

we do so by establishing the new linear equation 

X —y = ± — (f. 

Following up this idea Baur has solved the non-homogeneous 

^ system of an w-ary quadric and n — 1 linear equations between the 

variables; viz. let the system be 

..+2a^x.x^-\' ... = u . .(1), 

c„a;,+ . + c.„®„ = y. 

.(2) 

+ • + e„-tA = y^f 

^Th-en we wish to establish a new linear equation 

+ .(3), 

SO that if we determine the values of x^... in terms of 

from (2) and (3), and substitute their values in (1), the result shall 

only contain in th^ form y^. We are to have then 

'«‘=yn+'^Kyiy, .(4). 

Now if 

we have +... + a„,y,.(5). 

Hence, differentiating (4) partially with respect to we get 

^ _du dx^ du dx^ du dx^ 
d^,' d^^'^ d^,’ df^'^ dx^ * df^^ 

or, by aid of (5), if ~ ^ ^ ’ 

^I/n = '^1 ^«1 + ^2 + • • • + 

Cl2 ••• Ci„ 

^21» ^22 ••• C2« 

^n-12 ••• ^n-ln 

U, ... 

(6). 



110 THEORY OF DETERMINANTS. [chap. VIII. 

Substituting for the differential coefficients their values we 

determine the form of the equation (3). We have still to determine 

the value of y,,. To do this we introduce the n {n — 1) quantities 

^11» ^12 ••• ^in 

^21> ^22 ••• ^2n 

such that 

and hence 

where 

Thus 

A 

^n-l1» ^n-12 • • • ^n-ln» 

^ri«i. + ^r2a2.+ ... + e,„a„, = c,,; 

^11 > ^12 ••• ^in 
= 

^11 • • • ^in 

^n-12 * * • ^n-ln 1 • • • i M n—In 

^2 .. • Wj ... 

Cy..(7). 

Now from the product of (6) and (7), 

••• C^y:=A ^11 ••• • Cii ••• 

1*“ ^n-lH ^n-11 ... n 

... ®„ ... 

-Bu, ... 
A. 3/1 

1* ■^n-12 • • • -1n-1> 3/«-i 

where 

3/i» 1/2 ••• w 

^rs = + ... + 

~ ^rl "h ^s2^12 "h • • •) 

+ Cr2 (C.1^21 + ^.2^22 + • • •) 

+ ... 
= “ 0, C.2 ••• ^rn 

«12 ••• 

®nl» ««2- ^nn 

= AB, 

.(8), 
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On the right-hand side of (8) all the quantities are known from 

(1) and (2). Thus Cy^ is known; substitute its value in the left of 

(G) and we have the required equation (3), which with the equations 

(2) forms a system of-w linear equations sufficient to determine 

the quantities ... x^. 

16. The equation 

c^ii X., 
^12 > 

a,3 ... = 0 

^21 > ^22 > ^2n 

^n2 J ••• 

(where = aj formed by taking X from each of the leading 

elements of a symmetrical determinant is of considerable im¬ 

portance in analysis. The following proof that its roots are real is 

due to Sylvester. If we denote the left-hand side of the equation 

by (f> (X) we have 

<#>(- ■\)= X, a,2 . .. 

^21 > 0^22+^ . 

«nl» ^«2 • .. C^nn+^ 

and hence 

(^(X) ^(- X) = 
^12 ••• 

^21 > •“ ^2» 

^nl > <?n2 • 

where c„ = + ... + 

the X disappears, because Hence, expanding the right- 

hand side by Art. 22 of Chap. III., 

(#) (X) (^(-x) = ax^Sa,XT. 
Now, by IV. 9, Cj, ^2... are all sums of squares, the coefficient of each 

power of X being the sum of squares is positive. Hence, if we equate 

the right-hand side of this last equation to zero by Des Cartes’ 

rule it cannot have a negative root. Thus X cannot be of the 

form ^ J— 1. In order to shew that it cannot have the form 

“ + J— 1 we have only to write — a = ctj/, &c., and the case 

is reduced to the preceding. 
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17. The proof might also be conducted symbolically as 

follows. 

Putting = I I = X" 

in the result of ill. 21, 

</>(-X)=(^+xr; 

,i>{\)<f>(-x) = {A^-\r.(1) 
where the indices within the brackets mean actual powers. 

On expanding (1) the coefficients of the powers of X are even 

powers of A, or, passing from the symbolic to the real expansion, 

are the sums of squares of minors, and are hence positive. The 

remainder of the proof is as before. 

18. We shall conclude this chapter by giving Furstenau s 

method of approximating to the least roots of equations, following 

Baltzer’s modification of it. 

Let the equation be 

f(x) = «(, + + ... + a^x^ - 0.(1). 
We shall suppose that all the roots are real and unequal. 

The system of p equations 

f{x)^ 0, xf{x) = 0 ... «'"*/(«) = 0.(2) 

is linear with respect to 1, x, x^ ... hence we can eliminate 

any p — 1 successive quantities, say 

x^\ x’^...a/^\ 

For this purpose we multiply the p equations (2) by the com¬ 

plements of the elements in the first column of • 

p 

^ic-xy 

The suffixes of R mean that the determinant (which is ortho- 

symmetrical) begins with and is of order If ^ is greater 

than n, or negative, = 0. Adding the equations so multiplied we 
get 

■ 0 = <f>,{x) 4- + ... + (3), 
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whicli is satisfied by a root of (1). Here 

%x + + ... + V,®*, %, a^j 

«.+2 ••• + X a^, a,... 

0, dj, ••• ao> ••• 

. 

+ „. +a!* 

^h-\> 
.(4). 

If now equation (1) we have the 

n—k identical equations 

0=+• •■ + 

From these, by aid of (3), eliminating h^... we get 

... 

fr+P r>, ft+P+1 

Or 
1 aj aj’ ^ArHp > 1, U; .... .>C 

(^fc+l) 1 
^+P > 

...a;. n-tjr-1 

/y.*+P •^*+1 
n-*-l 

fr+1 

Expand according to the .elements of the first column and then 
multiply up by a?*"^^, and we get 

0=cAH + c„,(^J ... 
where ... are independent of jp. 

This equation is satisfied by all the roots of (1), and if 
be the n — k roots of greatest absolute magnitude, when p increases 
indefinitely the remaining roots of (1) are by the last equation 
those of 

s. D, 

^,(a-) = 0. 

8 
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Hence, if is the least root of (1), the two least root%s 

ajg... the h least in absolute magnitude, then 

a:,a;, ■ 

To establish this rule completely as one of practical utility it 

would be necessary to shew, for instance, that x^ lies between two 

successive convergents, obtained by taking two successive values 

ofp, and that these convergents approached and did not recede 

from it. The method has been extended by Fiirstenau and 

Nagelsbach to the case where the roots are not all unequal, and 

also to the case of imaginary roots, but the discussion of these 

points must be omitted here. 



CHAPTER IX. 

RATIONAL FUNCTIONAL DETERMINANTS. 

1. If we have a series of n quantities Xy y, z ...u, t we shall 

denote the product of all the' ^ n (n — l), differences obtained by 

subtracting from each number all that follow it, by 

y, z ... u, t). 

So that 

^ (x, y,z .... u, i) = {m- y) {x-z) ... (x-t) 

iy-z) ... (y-t) 

{u-t). 

This function {x, y, z.... u, t) is an alternating function of all 

the quantities Xyy, z ...ty viz. on interchanging any two of these 

it changes its sign, but not its absolute magnitude. It is thus of 

the nature of a square root, having two values equal in absolute 

magnitude, but opposite in sign. This is conveniently indicated 

by the index J. The product of the squares of the differences 

will be denoted by f (x, y, z.... u, t), and is a symmetrical function. 

This notation is Sylvester’s. 

2. We have 

. a;, 1 II 

2/”’' •< • y> 1 

•n—1 
^ > . t, 1 

For the determinant on the left vanishes if any two of the quanti¬ 

ties Xyy ...t become equal, because then two rows become identical. 

Thus the determinant divides by the difference between each 

8-2 
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pair of the letters, being a rational function. Hence it contains 

... t) as a factor. But the leading term in the determinant 

is 2/”"®... w. 1, which is also a term in ... t) with its 

proper sign. Thus the theorem follows. 

3. Every alternating function of a;... ^ divides by (x ... t)y for 

on interchanging two variables the function changes sign, and 

hence vanishes if they become equaSl, thus it divides by their 

difference, and therefore by (a;... t). 

4. If f^{x) be a function of the i*** degree in a?, the coefficient 

of whose highest term is unity, we have 

A-M’ f.-M •■•/,(’/). 1 

/„-.(<). /„-2(<) 1 

= y--<)■ 

For if we subtract the last column, -multiplied by a proper number, 

from the last but one, the elements in this column becomex^y ...t. 

Now multiply the last two columns by the proper numbers, and 

subtract their sum from the last column but two, the elements of 

that column now become a?*, ... f. Proceed in this way and we 

reduce the determinant on the right to that in Art. 2. 

If the coefficients of the highest powers of x were not unity, 

the determinant is equal .to {Xy y ... t) multiplied by the product 

of the highest coefficients in the separate functions. 

For example, if 

/i(®) 
a;(a? — 1)... {x — i + l) 

i\ 
= x... 

^n-l> ^n-2 ••• 1 

2/«-2 ••• 2/l> 1 

g^(a;, y ... t) 

(m-1)! (n-2)! ...2!‘ 

1 

The denominator can also be written 

2-2_ g-s (n-1). 
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5. If /(a;) = a„a!“-‘ + a^a:"'*+...+a„„ 

we see by the theorem for multiplying two determinants (iv. 3) 

‘ that 

«11 ... a:,"-‘, aj,”-*.. . 1 

^ n-1 n-2 . 1 

\^{^irX^...X,). 

If 

I “a I = 1. c.(-2/i). Cs(-yi)“ ••• (-y.r' 

1. o,(-y^), c^(-y,y ... (-2/,)”“ 

I 1. Ci(-2/»). ... (-2/„)"“ 

= y,... 2/„), 

where (7 is the product of all the binomial coefficients of order 

n — 1. 

For the elements in each column of the determinant are multi¬ 

plied by that power of — 1, which is introduced by moving the 

column from its place in ^ to the place it occupies. 

Thus 

K - yi)"“. (®i - yX'" • • • K - y«)"’‘ 

k - (®s - y^y' • • • - yS'' 
• • • •.... 

K - (®« - %)““ • • • 

= 0^(x„ x^... x„) (y,, ... y„). 

If x^ = this gives us f (cCi ... ccj in the form of a determinant. 

6. We may also give still further determinant forms to the 

product (a-,, a:, ... jrJ (y„ y., ... y„). 

Thus 

f^aJ., a-, •••*„) (y., y,... y.) = ... 1 yr -1 

a:„”-’ - 1 1 

= 1 l-Ci.!. 
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where if we multiply by rows 

c,=yr+yr+...++1 

Or if we multiply by columns 

+ • • • + 
If we put X. = y^ and s. — x* + x*+ ... + we get 

?(a:„ a;, ... aJ = ^2n-2> ^2n-3 ••• Vi 

^2n-3> ^2n-4 ••• Va 

Vi> ^ft-2 ' ... 5, 

5o> ••• ^n-l 

5,. ... 

Vl> ... ^2n-2 

an orthosymmetrical determinant. 

7. 
array 

A more general theorem is the following. ^ Consider the 

a:”-" ... X,y 1 
/V, m-1 
*^2 > ... 1 

^ wi-l 
*^w f xr^... 1,- 

where n is greater than m. Compound it with itself, we get a 
determinant of the order which is equal to the sum of the 
squares of the determinants, obtained by taking any m different 
rows in the array. The determinant has for elements 

-h... + xrxr^ 

= s. i+fc-Z-* 
Hence, by aid of Art. 6> we get 

2{?(a:„a!,...)) = 

where x^,, ... are any m of the n quantities x^... x„. 
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8. We have clearly by Art. 2 

07”, a;"-' ... a;, 1 
^ n „ n-1 „ T 

... a^, 1 

^ n ^ n—1 „ 1 

where f (x) = (x-a^) (x-a^) ... (x - a„) 

= ar - jp.aT* +p,x"-^ lyp^x' + .. 

Equate coefficients of of on both sides and we get 

< ... a «« ... 1 

a," ... oq<-‘ ... 1 

= ?i(a. ...a„)jp„, 

... a„ , ... 1 

is the sum of the products w — i at a time, without repetition, 

of the quantities ... a„. 

9. We may write the first equation of the preceding article in 

the form 

= (-l)“r^(a., cq ... aj/(a:), > a” .. a„. 0 
n-1 

“l > 
„ n-1 .. a„ , 0 

“2 • •• a:, 0 

1, 1 . .. 1. 1, 0 

o
' 0 . ... 0, 0, 1 

and similarly we have 

OL ”, '-‘i > « »* 
«2 ... a„”. 0, v" 

„ n-1 
«1 » ... a,”■^ 0, 

^2 ... 0, y 

1, 1 ... 1, 0. 1 

0, 0 ... 0, 1, 0 

= •••«.)/(y). 

Form the product of these two determinants by rows, and we 

have 

o, ... oJ/(a:) ./(y), ^2n> ®2n-l ••• 5n, a?” 

^2n-i> ^211-2 ••• Vl> 

«n, - So. 1 

y". 
y.-. ... 1, 0 
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from which by equating coefficients of the powers of x and y we 

get a number of theorems, is now the sum of thfe powers of 

the roots of the equation /(x) = 0. 

10. We may extend the theorem of Art. 8 as follows: the 

value of the determinant 

^ n+r-1 „ n+t^ 
. 

a"^ ... 

• B+1-1* „ n+r-2 
a«, «», 

1 

1 

1 

1 

which is of the form of that' in Art. 2, consists of three parts. 

First the product of all the differences of all pairs of the 

quantities ... he. which by Art. 2 is a deter¬ 

minant. Secondly, the difference of all pairs of the quantities 

cfj ... Gf„, i.e. (ttj ... aj. And, lastly, the product of all such 

quantities as 

/(a;J = (», - a,) (®, - a,) ... (x, - a„) 

= cc:-p,xr + • • • 

Hence its value is 

xr> 1 

r-1 _ r-2- 

••• 0«)/(®l) 

Multiply the row by and then eqiiate coefficients of 

x^. 0*2*'. x^ ... y and we get the theorem : 

If ^ is the determinardi of order ?ijformed by suppressing 

the colunms-containing the v^, w***^!.^ powers in the array 

then 

D. 

_ n+r-l „ n+r-2 .. a., 1 

.. I 

jPn-«+r-l> Pn-u+r-i * •• Pn-u 

jPn-p+r-l> Pn-v+r-2 *' •• Pn-v 
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where is the sum of the products ^ at a time of ... a„. 

If h is negative or greater than w, 

Jl. Let us consider the determinant 

i)=l 1 1 II 

Multiply the row by 

f{x^ =u,= (®, - a.) (a;, - a J ... (®, - a„), 

we get 

uu ... u D = I ——— . 
^ \x,-cc. 

The determinant on the right is an integral and alternating 

function both of the quantities ... and of ... a„. Hence 

by Art. 3 it divides by 

... xl) ?^(a., a, ... aj. 

Comparing the orders of the determinant and this product we 

see they are the same, hence the additional factor is numerical 

only. To determine it, put x^, ... equal to a^, ... 

respectively, all the elements except those in the leading diagonal 

vanish, and 

r-^ = W- “.) (®< - “2) • • • ('», - «,-i) - «,«) 
Xf — a^ 

= {>-1)'-* (a^^- a,) ... (a„ - a,) (a, - a^J ... (a, - a J 

when x^ — d^y 

thus the determinant reduces to 

n(n-l) 

(-1) “ ?(a,, a, ... aj, 

which determines tha factor.- Hence 

n _ (- 1) (®i. ••• (“i> ”2 ••• 
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12. If is the complement of —— in the determinant 

D, then is equal to the determinant obtained by omitting x. 

and on the right, multiplied by (—1)*^*. 

n(n-l) Tt x; T ^ 

(- 1) ° r (a;, ■. ■ a;, A, ■ ■ ■ a;,) (g,... ... g„) 

where 

-i-s— -!-i— —‘-a- 

Now if we write 

g(z) = {z-x^) (z-w^) ... {z-x„) 

••• ••• ®») («, ••• ••• «.) 

g' (®<)/ (“.) 

(aj. - a J (a;, - a J ... (a!„ - a J 1)” , 

then :^_ _/(*<) 5'(“») 1 
i)- 

13. The preceding article enables us to solve the system of 

equations 

—— + + ... + —■ ■ = u. 
X— a. 

VIZ. 

X—a. x^ — a„ x„—a ” 
71 1 n 2 n n 

.. - («t) f/ w I , /(jg.) i 
‘ / (“.) (S'' W - a. ■ ■ ■ - aJ 

In particular \iu^ = u^ ... = Since by the rule for resolving 

a rational fraction into partial fractions 
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we see by putting x = aj^m this, that 

/M 1 , ) /(^.) 1 _ 1 

123 

Hence if = 1, Vic 
9 (°l») 

" /w 

14. If in the determinant D of Art. 11 we expand each term 

in a series as follows 

1 a. 
,i»+i 

we see that the term in the expansion of the determinant which 

... x^r is 

af, ai .. •«/ 

a’. a« .. W.1 , 1*2 

Otj, 0^2 • “n* 

To expand the right-hand side we have 

1 1 

“i - “i) (®i -“,)••• - aJ 

X!^ ^ ^ ^ ^ n+r ^ - 
» » 

Here is the sum of all the homogeneous powers and 

products of order r, which can be formed from the quantities 

••• 

Now 

a!, ••• = a:,”"’ ... aj„ 1 

a;”-' - 1 

a;,"-... a;„,l 

Multiply the row of this determinant by the expansion of 

u~^, the coefficient of . x^^ ... is 

H„ ... 
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whence we get the final equation 

w(n-l) 

=(-i) == 
. .. H, 

when r is negative, ^ = 0, 5;=i. 

15. As an example of Art. 14, 

a*, a, 1 = — a, 1 

b‘, h, 1 0 6, 1 

c‘, c, 1 E^, 0, 0 c^, c, 1 

= — + hc ca -{■ ah) {h — c)(c — a) (a — 5). 

We may make use either of the results of Arts. 14 or 10 to 

evaluate determinants whose elements are sines and cosines. 

For example take 

X= 1, 1, 1, 1 
cos A, cos cos (7, cosD 

sin A, sin Bj sin G, sin D 

sin 3A, sin 3j5, sin SC', sin SD 

Write for the sines and cosines their exponential values, and sup¬ 

pose €*^ = a, &C. Then writing only the first column of the deter¬ 

minant 

1 1 1 . 
a a ^ " 2^{ahcdf a^+ 

a — a~^ a^-a^ 

a^-oT^ a«-l 

Add the second row to the third, divide by 2 and subtract the 

third row from the second,^ thus’ 

1 

a^-1 

X=- 
4 (abcdy 
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4 (abedf X= + 1 

a* 

a* 

the first determinant 

= (a — h)(a - c) (a-d) {a+h+c+ d) 

{h -c)(h- d) 

(c - d) 

by Art. 8. And the second, in like manner, is equal to 

{a — h) (a — c) (a — d) {bed + acd + abd + abc) 

(b — c)(b — d) 

{c-d). 

Hence 

{a—b){a — c){a — d) (b '-c){b — d){c— d) 
4,aWd^ ^ 

[a^b^c^d*{a+b + c + d) -{■ abed (a ‘ + 6 ^ + c * + 

1 a — b 
+ 6 + c + (^) + 4- 'h' c' diy 

Hence if 2/8=A + 5+(7+ 

A = - 2®. H sin --B) [cos (/8+A) + cos (/8 + ^) 

+ cos(/8+a) + cos(/S'+i>)]. 

16. If we differentiate the determinant of Art. 11 with 

respect to the elements of the row become 

-1 -1 ~1 

(®i - “i)' ’ (®. - “j)' "■(«',- “»)' ■ 

(-1)" 
c?“D 

dx^dcc^... dx^ 

= B. 

And thus 
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We shall now shew that 

5 

D 

111 

Where { } means that the function on the right is to be formed 

like a determinant, only all the signs are positive instead of 

alternating. 

Multiply the row of B by u^, then 

{w^u^...uJB = .(1). 

The determinant on the right is an integral and alternating 

function, both of and of aj, ... a„, hence it divides by 

a:,... •••“„)• 

If the quotient is <f)(x^,x^... x^, this is symmetrical with regard 

to each of the variables, and of order ?i — 1. Thus 

Now, by repeated use of the rule for resolving a fraction into 

partial fractions 

/(®.) ,f{oi){x,-ay 

<f>(a„x^...x„) xj 

/K) 

we get finally 

^ K. a;. •• a!„) 

5,_ ^ (g» a. •• “p)_ 

“<)(*!-a.) ••• (a’.-a,) 

,(2). 
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Now, in the first place, in the combinationi, k...p,iio repetition 
can occur, for in the product 

(a,... ajfi 

not only B, but also vanishes if x. and x. both coincide 
a?2 — ajj 1 

with Hence on the right of (2) we must write for i, k ... p all 
permutations of 1, 2 ... n. 

Now if we write a., ... a^, for ... x„ respectively, only 
a single term of (u^... remains, viz. 

while 

^{x^, ... a!„)= ... a,) 

= ±^(a„a^-- O. 
the ambiguous sign being the same for both. Thus 

n(n-l) 

(-1) * /'(«.)/'(«.) •••/'(«.)• 

where i. A; ... p is to be a permutation of 1, 2 ... n. This proves 
the theorem as stated at the beginning. 

17. The coefficients in the expansion of the rational fraction 

I +b^x + b^x^ + ... 

1 + a; + + ... ' 

ill ascending powers of x can be represented as determinants. Viz. 

if the expansion is 

1 + P^x + P^x^ + ... 

we have 

{l+b^x + b^x^ + ...)=-{! +P,x + P^x^+ ...){l+a,x + a^x^+ ...), 
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and hence equating coefficients 

a^Pj + ttjPg + P3 =h^ — a^ 

“n-I-Pl + “.-2-P2 + • • • + Pn= K-a«, 

a system of equations to find P„. The deterniinant of the system is 
unity. Hence, if after solving by viii. 1 we move the last column 
to the first place, and change the sign of this column 

P„ = (-!)“ a,-\, 1 

“i> 1 

%-K “1. 1 
.1 

~ ^n-2. 

= (-!)“ 1, 1, . 

6,, a„ 1, . 

Ctg, Ctj, 1> • * 

K “s. “2- “1. 1 

as we see by subtracting the .first column from the second in the 
latter determinant. 



CHAPTER X. 

ON JACOBI A NS AND HESSIANS. 

1. If 
riables 

Vxy Vi ••• Vn ^ functions of the n independent 
... x^^ and if 

Ay 
dx^ 

va- 

then the determinant | \ is called the Jacobian of the functions 
Vi'-Vn respect to the variables x^ ... x^. The name was given 
by Prof. Sylvester after Jacobi, who first studied these functious. 

The notations 

d{y„y. ••• yj. 
d{x^,x^ ... xX J (yi> — 2/») 

have been employed for Jacobians, each of which has its advan¬ 
tages. The first renders evident the remarkable analogy between 
Jacobians and ordinary differential coefficients. The second is 
useful when there is no doubt as to the independent variables. 

If the y’s are explicit functions, the Jacobian is form^ by 
direct differentiation. 

2. If the functions ... y« are not independent, but are con¬ 
nected by an equation 

</> (y,. 2/2 ••• 2/»)=0> 

the Jacobian vanishes. For if we- differentiate this equation with 
respect to we get 

dy^ dx^ dy^ dx^ dy^ dx^ 

s. D. 9 
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where A;=.l, 2 ... n. Eliminating 

dcj) d(f> d<j) 

Wi 

from these equations we get (viii. 3) 

d{y,. y, ••• yJ_Q 

d(x^, ... x„) 

3. If the functions y are fractions with the same denominator, 

so that 
u. 

g dy, du. du 

Thus 

... arj 

dx^ 

u, 

dx^ *dxj^ 

0, 
du, du du. 

du^ du 

du 

du„ du 

du 
Add the first column multiplied by ^ to the {i +1)®‘ column, 

and we get 

d{y, y„) 
d (»,... x„) 

du du 
w, 

* ■■ 
du. du. 

du„ dUn 
y'n. .. u-^ 

dXn 

whence dividing each of the last n columns by u 

d(y,--yn)_ 1 
d{x^...x„) u"* 

du 
dx, “ ‘ dx„ 
du 
dx^ 

du. du^ 
’ dx, * * * dx„ 

du.. du.. 
dx^ dx^ 



2—6.] ON JACOBIANS AND HESSIANS. 131 

4. The determinant on the right has been denoted by 
K{u, ... w„). It has interesting properties of its own. For 
example, since the Jacobian vanishes if the quantities ... 2/„ are 
related by an equation, it follows that 

K{u, ... uj = 0 

if a homogeneous relation exists between u, ... 

If 

it is readily shewn that 

“‘=i> 

jr(u, V,... ■»„). 

5. If the functions ••• yn possess a common factor, so that 

d fa ... yj _ 1 % 

yi = 

0 0 

du du 
dx^ dx^ 

du. . du 
dx„ ^dx^ 

du^ du du. . du 
M:r7 +“» jT dx„ 

du 
In this determinant multiply the first column by and 

subtract it from the (i +1)®* column, then 

d(yf- yJ 
d (x^ ... x„) 

u, 
du du 
dx^ dx^ 

du^ du^ 

dx^ dx„ 

Mn, 
■ 

dxj^ dx. 

iff*. 
2U-U. - -- 

6. If the functions y^ ... y„ are given only as implicit functions 
of ... by means of the n equations 

^i(yi ••• y«> ‘>>1 ••• ®n) = o ••• -f’.Cyi ••• ••• ®n) = o> 

9—2 
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then 
, ^'„cZ (.F, ... F„) . d{F^ ... FJ 

d ... isj '• ’ d {x^ ... ■ d (y, ... y„) ' 

For if we differentiate the of the given equations with 

respect to we get 

dy^ dx^ dy^ dx^ dy^ ' dx^ dx^' 

Thus by the rule for multiplying two determinants (iv. 3) 

(-1)« 

or 

dF, dF, % 
dx. dy. ' dx. 

cZ(f. ...J-J cZ(J’. cZ(y....yJ 
^ ^ d{x^...x^ d(y^...y^) ' d(x^...x^’ 

which proves the theorem. 

(i) If F^ does not contain x^ ... x._^, then in the determinant 

d{F,...F:} 
d(x^ ... X,) 

all elements below the leading diagonal vanish, and it reduces to 

dF. dF. dF„ 
dx^ ' dx^ dx„ 

(ii) If 

then 

and 

(iii) 

-F,=-yi+/<(®i ••• a=«). 
d(F^...F„)_. • 

d(y, y.) _ d if, .../„) 
d{x^...xj d(x^...x„y 

If from thie given system we deduce by elimination 

= X,... x„) 

y^ = 4>^(Fi> ®«) 

% = ^s(2/i. — ®«) 

y«=^»(y. y«-.. «„)■ 

^ ... _ 
dy, ' dx^ ■■■ ■ dx, dx.. 

y' 

Since 
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we have 

#1 dcf)^ dcj)^ = 1, 
dx^ ’ dx^ 

#2 

0, #2 ^ dVi 
dx/ dx. d<i>. 

0, 0 ^ 
’ dx 

dy: 

0, 

■ 1, 

0 

0 ... 

--yj 
d{x^ ...xj 

It follows then that 

<^(^1 ••• yn) ^#1 #2 

d(x^ ... xj dx^ ■ dx^ ■■■ dx„’ 

thus if 

we must have 

i.e. we must have 

d(j/, — y„) 
d{x,...x„) 

d<f>t #2 ^=0, 
cZajj dw^ dx^ 

0, 

where i is some number between 1 and n. Hence does not 
contain a?,. That is to say, we have 

2'i = '/>.(yi ••• Vi-v 

now (y. ... y„ ... a:„).' 

Eliminate between these, and we obtain 

2/<«=-f<«(y. -y,> “’.w - 

so that 3/.^j does not contain Similarly we can shew that 
does not contain and so on ; finally y„ is independent of x^ or 

yn = 'P'n(yt ••• 

So that if the Jacobian of vanishes these functions are not 
independent. This is the converse of the theorem of Art. 2. • • 

7. If are functions of and these again functions 
of ajj... a7„; then 

d(z^... z„) _d{z, ... g„) d(y.... y„) 
d (w,... d (y,... y„) ' d («,... «„)' 



134 THEORY OF DETERMINANTS. [chap. X. 

For since 

dx^. dy^ ’ dx^ dy^' dx^ ''' dy^ ' dx^ 

we have 

^ ^ X -^1 
dx^ . dy^ dx^ I ’ 

which proves the theorem. 

In like manner, if ... are given as functions of y^ ... y„, 
and these given as functions of £Cj ... x^^] then 

But if m < n 

•■• 0_A 

d(x,...xj ’ 
if m>n. 

<^{^1 ■•• ••• O d(y„y,, y,...) 
d(x^...xj d(y„y^y, ...)' d{x^,x, ...xj’ 

where for t, u, v ... we take all m-ads in n (iv. 2). 

8. If /j .../„ are independent functions of ... £c„, then 

cTj ... x„ are independent functions ofand we have 

d{f, ■••/„) d{x, 
d(x^...xj' d{f^...f„) 

For differentiatingwith respect towe must consider x^ ...x^ to 

be functions of.../„. Thus 

^ ^ ^ ^ ^ 
' <¥. dx^' df^ dx/ df^ 

is equal to unity or zero, according as k is or is not equal to ^. Hence 

df, = 1 

dx. ' df^ 

For in the product only the elements in the leading diagonal do not 

vanish, and these are all equal to unity. 
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d(A—fJ d{x^^...x„)’ 

d(x^...xj .../„)■ 

For we have just seen that 

dx/ dfj^ dx^' dfj^ ^ dx^’ df^ 

%L ^14.^ ^.4. ^”=1 

dx.-dfjdx^-dfj-"^dx^-df. 

Vn ^»-n 
dx^'df^ dx^'df^^dx„'df^ 

Multiply these equations by respectively and add, 

then (ill. 11) 

^d/r 
Similarly we can shew that 

Again we have (v. 6) 

All ••• -^iia 

Afnl • • • -^mni 

^m-1 ^ ( JCi+1 • • • »/w) 

Substitute in the left for A^ the value just found, and we get 

An.d{x^...xJ _ Q 

^(/i..•/.)■" d{x^,...xy 

which on dividing by gives the result required. 

The last equation is proved in a similar way. 

10. If we suppose the functions /j.-./n to depend on t, we 

have by (iii. 16) 

dA _<A d\f^ 
dt 

^’ = l, 2 ....7l), 
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and 
A dx. 

II 

^1^ A^(d% dx dy, 
^ \dtdx^' df^ dtdx^ ’ 1--) 

= K.®' ' 
or 

d 
dt' 

log ^ = 
V d ldf\ 
^ dy \dt} • 

A similar relation holds for B. 

11. The relations between Jacobians present great resemblance 

to the ordinary formulm in the differential calculus. 

Thus the formula3 

d{z^ ... z^) _d(z^ ... d(y^ ...y„) 
d{x;...x^ d(y^...y„)'d{x^...x^)’ 

dLA •••/«) 

d{x,...x,)-d(f,...f„) ' 

are the analogues'of 

dz _dz dy , dy dx 
dx dy ' dx dx ' dy 

1. 

This analogy, which was perceived by Jacobi, led Bertrand to 

devise a new definition of a Jacobian. Let •••fn be n functions 

of the variables x^... x^. Now if we give to the variables n dis¬ 

tinct series of increments 

d^x^, d^x^ ... d^x^ 

d.,x^, d^x^ ... d^x„ (1), 

let the corresponding increments of the functions be 

dj, ... dj„ 

dj,.dj,...dj„ (2). 

dj^ djn 

Then just as the differential coefficient of a single function of a single 

variable is defined to be the limiting ratio of corresponding incre- 
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ments of the function and variable; the Jacobian of the functions 

the n variables ... is defined to be thejimiting ratio 

of the determinants of the systems of increments (2) and (1). 

That this leads to the same Jacobian as before is plain from the 

equation 

df. 
dx^ dx„ * " 

which gives (iv. 3) 

i dj, I = i d,x, I Ml 
dx^ 

or ‘ 
\d,x,\ d{x^...xy 

according to our former definition. 

Using this new definition we can prove all our former 

theorems. Let us use it to prove the first of the above equations, 

viz. the theorem of Art. 7. If the system of increments given to 

x^...x^\)e 

... d^x, 

d^x^... d^x^, 

let the corresponding systems for y^.. - and z^...z^hQ 

d,y^:.d,y„ 

d„y,---d„y. 

Then we have identically 

d.^i — d.z, 

d„z^... d„z„. 

I d,z, I __ I d,z, I I I. 

I d,x, I \d.y^\ \ d.x, \' 

or by definition, 

d(z, ... __d(z^ ... z,) d {y^...yj) 
d(x^...xj d{y^... yj'd{x,... x„)' 

12. We can also, using alternate numbers, obtain a symbolic 

expression for the Jacobian, from which the ordinary results follow. 

Viz., ... 3/„, being n functions oi x^... x^, let 

y = e,y, + e^y,-\- ... + ejy,, 

X = e^x^ + e^x^ + ... + e^x^,. 
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Then 

whence (l. 19) 

But now 

dx^ * dx^ * * * dx^ dx^ * * * dx^ 

dx^ dx^ 

dx^ dx * dx^ 

(1). 

Thus the above equation (1) becomes 

I'M” ^ d(y, — yJ) 
\dx) d{x^... x„) ‘ 

From which symbolical equation we can deduce our former 
theorems. 

For example the equation 

©■(!)■- 
gives at once 

■d(y,...yj d{x,...w„)_^ 
d(x,...xj ' d(y,...y„) 

13. Jacobians occur in changing the variables in a multiple 

definite integral. Let us transform the integral 

d=jj—-F(y,--y^dy^---dy„ 

to an integral with respect to ... x^, the functions ... being 
supposed given functions of x^... x„. 

We proceed in the manner used by Lagrange to transform a 
triple integral. Beginning with we have to find the sum of the 
quantities Fdy^, 
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while 2/2... remain constant. This gives us 

0 = +^dx + +^'dx 

di. dy. 0 = + ... + '^dx„ 
dx, ^ dx, “ dx„ ” 

139 

dy.. 

Solving this to find dx„ we get (vill. 1) 

.Ai dyn = J„ dx„, 

where 
j _d{y^, y^...y,) 
' d{x^,x^.:.xy 

Hence we must replace dy^ by dx^, and 

■f =/• ■ ■ Fdy^ .'..dy„ = J...F-^ dy^... dy^^x,, 

the limits of x^ being determined from those of 

In this integi’al begin by integrating with respect to 

We have to find the sum of the quantities F. ^^dy^_^, while 

2/1... x^ remain constant, so that 

dx, ^ 

dx„ 

dx_ 

which gives 

J'n-,dy,_^ = J,_,dx^^. 

Thus dy , is to be replaced by and F.-^ dy,_^ 
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by F.-^ Hence the limits being properly deter- 
^n-l ^n-2 

mined 1= j... ... dy^ da:,..,dx^. 

Similarly if we began by integrating with respect to we 

should get a system of equations which would give us 

and 

,8 dx. I=j...F^^dy^...dy^ 

Proceeding in this way we should finally obtain 

l=j...F^dy^dx^...dx,. 

Then we integrate with respect to subject to the equations 

dx^ = 0, dx^ = 0 ... dx^ = 0, 

so that we must replace dy^ by ^^dx^, i.e. J^dx^, 

Thus dx„... dx„ l^f...FJ„dx, 

= [... F(x) y”) dx^dx^ ...dx^. 
} '' ' d{x^,x^...x„) ‘ 

F being the result of substituting in Fior y^... y^ their values in 

terms oi x^ ... x„. 
1 n 

14. As an example let us consider the following deteraainant 

of definite integrals due to Tissot, we shall however follow Enneper’s 

proof. 

Let 0^2 ••• ^ constant quantities in ascending order of 

magnitude, and let 

<#>„ (®„) = («„ - a,)*’* ••■(*„- aj"' 

where p^, either positive proper fractions or any real 
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negative numbers. The determinant to be considered is then 

^nx * * * ^nn 

where 

(“„«=«)• 

••L 

Ja^ • J aa J an <Pi ^2 fe) * • * (^«) 

(exp. = 6“). 

Now let US introduce in place of aj^the n new variables 

2/1... 2/^, given by the equations 

2/1 , ... + -^ = 1, 

2/1 I 2/2 , I 2/n 

Then by ix. 13, 

and hence 

„ __£M. 
Z'K)’ 

Vx 
dx^ x^ — a 

Thus by ix. 11, 

d{x^...x^ x^ — aj^ 

y. ■■■ 

gfa)-yK) /_ . 

AiVx— y,) i^x — ^^n) 

Now 
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Hence in the integral we replace dx^ ... dx^ ^ (^i • • • hy 

Now if we write 

(®) = (s - tti)... (z - a J -z)... (a„ - z) 
we have 

y,„- 
yt y. -Vn 

Hence 

dx,... dx^ 

is replaced by 

dy^... dy^ {a^... aj 
F;(a,)P^...FJ(aJPn * 

Again x^... x^ can be regarded as the roots of the equation 

+ + ... + = 1, z — z — 

the roots of which lie between and % and ttg... a„ and oo . 

Hence y^ ... y^ take all positive real values. Also we have 

x^ + x^+ ... -ha!^ = y,+y^+ ... +yn + a^^+ ••• +«„• 

And our integral reduces to 

n(«-l) 

(-1) a ...gjexp.f-g,-■■■-gj 

r... 
Jo Vi Vri 

dy^ ... dy. 

n{n-l) 

^(-1) --r(i-ff.)r(i-j)j-r(i-j)j 

15. If w be a function of n variables x^yX^...x^ and y^ ... 2/„, 

its differential coefficients with respect to these variables, since 

dy^ _ d fdu\ _ 

“ ’ U^J ~ 

d^u 

dxj^ dxj^ \dxj dx^dx^ 

= 
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The Jacobian oi ... ^„ is a symmetrical determinant formed 

from the second differential coefficients of u. This determinant is 

called the Hessian of u after Hesse, and is denoted by H (“). 

so that 

The Hessian of u will vanish if the first differential coefficients 

of u are not independent (Art. 2). 

For example, if 

u = + x^x^ + ... + xfx^ + ... + 

^ = 2 {x^ + ... + + ... + x^), 

(Fu , 

H{u) = 2(®/ + ®,* + ...+0. 

4iX,X„ ,2{x^ + x^ + ... + x^)... 

Or dividing the 

This is a determinant of the form of that in ill. 25. If we write 

So--x^ + x,^ ... + 

V = {<7-X^){<7-X^) ... (<7-X^) 

If u — + ifz^ + s V, 

this gives 

H {u) = 24 — {x^ + 2/* + z^) u\. 

16. Jacobians and Hessians belong to that class of functions 

known as covariants. That is to say, if these functions are trans¬ 

row by 2ic., and the column by 2Xj^ 

x: + x,^ ... +XJ 

2x^ 

2< 
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formed by means of a linear substitution, the Jacobian of the 

transformed functions is equal to the Jacobian of the original 

function multiplied by the modulus of the substitution, and the 

Hessian of the transformed function equal to that of the original 

function multiplied by the square of the modulus. 

Namely, if the variables be transformed by the substitution 

^,-2^2 • • • d" ^irHn ^ 

the determinant | | is called the determinant, or modulus, of 

the transformation. 

If the functions oi ... when transformed by this 

substitution become the functions ?//, y/ 

dyi ^ dy^ dx. 

dx^ 

= ^y< 
dx. 

dL 

• y'n of ••• in' Since 

dx^ 

di. 

dx^ 

dx^ 

a., 

it follows from the multiplication theorem that 

djy^ ^ d(y^ ... y„) 
(ft •••?.) d{x^...x„) 

which proves the theorem for Jacobians. 

The theorem for Hessians follows from this, viz. if u be the 

original and u' the transformed function. Since the Hessian of u 

is the Jacobian of 
du 

dx. 

Hill' 

du 

dx„ 
we have 

du du ,(du du 

\d^,’ W. 

rf(ft. ft - 

, (d.u du\ 

"'djJ 

du^ 

’Ml 
ft) 

Now 

H{u') 

d {x^ ... 

(Tu' d^u 

dx^d^ d^dx.’ 

^ fdu du\ 

"■ dxj 

«!(ft ••• ft) 



16, 17.] ON JACOBIANS AND HESSIANS. 145 

i(diL du\ 

.1^ d^J 
rf(a-, ... isj 

= //(u). |aj«. 

17. If we have n linear functions 

y. = + ... + (i = 1, 2 ... n), 

If w is a quadric function 

“ = ^1®!"+ ••• ••• , 

then ir(») = 2”|6,J,(6, = JJ. 

The symmetrical determinant on the right, which is called the 

discriminant of the quadric, is therefore an invariant which on 

transformation is multiplied by the square of the modulus. 

s. D. 10 
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APPLICATIONS TO QUADRICS. 

1. The general quadric function in n variables x^... oo^ is 

denoted by • 

the coefficient of x^ being a^^, that of 2x^Xj^, and we suppose 

By X. 17 the symmetrical determinant A = | | is propor¬ 

tional to the Hessian of u, and is hence an invariant, it is called the 

discriminant. On transformation it is multiplied by the square 

of the modulus of transformation. 

Let us write ’ 
, du 

= a,,x^ + a,^x^+ a^^x^. 

2. If we form a new quadric whose coefficients are the com¬ 

plements of a^m Ay viz. 

U=l,A^y,y„ 

U is called the reciprocal of the given quadric. We may also 

write it in the form (ill. 25) 

0, y, -..yn 

y^y Ujj... 

ym ®'nl • • • ^nn 
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Since | .4^^^ | = and if is the complement of in this 

■ determinant a^^ = (v. 6), we see that we can write u in the 

form 

We have also 

II 1 0, iCj . .. 

. Ar- „A 

Ar- .. 
> 

An — — 0, ••• 

••• «in 

as we see by multiplying the last n rows hj and subtract¬ 

ing their sum from the first. 

3. ‘ If = 0, since then 

^ ik 
it follows that 

= 2 ■jA^A^y,y^ 

■ =2(VA3/,r 
is a complete square, and that the lineo-linear function 

F=-| 0, ... 

Vv ••• 

Vnt A„^ ... A. 

.= 

is the product of two linear factors. 

4. The reciprocal quadric U is the first of a series of co¬ 

variant qiiantics. If the variables are transformed by a 

linear substitution 

®< = Ca ®i' + < + • • • + .(1) (f = 1, 2 ... u), 
10—2 
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then the function 

^1^1 +^22/2+••• +^n2/n 

becomes 

... +57/ (^^li2/1 +^2.-2/2 + ••• + ^^Hi2/«) + ••• 

Hence, if we have a series of quantities 2// ... given by 

2// = c,,2/, + c,,2/,+ ... +c„,2/n.(2) (^ = l, 2 ...71), 

the function on transformation becomes changed to 

and so is absolutely unchanged in form by the transformation. 

Now observe that in the substitutions (1) and (2) the deter¬ 

minants of the transformation are identical; only the columns of the 

determinant of (2) coincide with the rows of the determinant of (1). 

Also in (1) the old variables are given in terms of the new, in (2) 

the new variables are given in terms of the old. The variables 

2/r‘“2/n^r® said to be contragredient. Any function of 

the coefficients of u and the quantities y^.^.y^ whose value on 

transformation is equal to its original value multiplied by a 

power of the modulus of transformation is called a contra- 

variant. 

The semi-differential coefficients are contragredient to 

5. If the p sets of n variables 

2/11 ••• 2'nl 

2/12 ••• 2/«2 

2/lp • • • Vnp 

are contragredient to the variables 

determinants 

2/11 • •• 2/ip 

•• «««> 2/«i • 

Vn • •• 2/«i 

2/ip • •• Vtip 

then the series of 

are contravariants. 
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For, let us consider the quadric function 

+ 2<, («. yij + • • • + ®„2/J + ... + + ... + x^yj, 

where the variables ... ... are cogredient ,{i.e. transformed 

by the same substitution), while are contragredient to these. 

If we regard F as a quadric in 71 + ^ variables x^ ...x„, t^... 

Bp is its discriminant. Let us transform it by means of the sub¬ 

stitutions 

y! 

= cX + -+c,X( 2...„) 
= + ... +c„,y„) 

k — 1, 2 ...p. 

Then the determinant of the transformation for x, t is 

Cm ••• c„„, 0 ... 0 

0 ... 0, 1 ... 0 

I 0 ... 0, 0 ... 1 I 

In the transformed function F, the terms multiplying are 

unaltered in form. Hence, by Art. 1, 

Thus Bp is a contravariant. Since on transformation it is 

multiplied by the square of the modulus, it does not change its 

sign. 

6. If ^ = 1 so that we have only one system of ^s, then B^ is 

the reciprocal quadric. If for uniformity we denote the discri¬ 

minant by Bq, we have (ill. 25) 

T> S' 

And in general we have 

B. 
^dBp 

da,. Vu jp+1 Vk, J>+1* 
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Clearly 

2/n ••• Vxn 

VnX * * • Vnn 

while vanishes identically if y> is greater than as we see by 

resolving it into the sum of products of complementary minors of 

order n and jp. Thus we have the series of functions 

-^1 ••• 

containing 0, 1, ^ n series of variables ?/, and of orders 

71 — 1.... 1, 0 in the coefficients of the quadric u. 

7. The determinants Rj, are of great importance in the dis¬ 

cussion of the properties of a quadric, and especially in the reso¬ 

lution of the quadric into the sum of squares of . functions linear in 

the variables x^.., x^. 

If Wj ... are the semi-differential coefficients of 7/, let us 

wite 

• «ln> 2/n • 

a«i- • ««n, Vnl • 

I/n • • I/nl 

yip • 

.. 

We must remember that = 0 identically. 

Also let Ap be the determinant obtained from TJ^ by erasing the 

(ti +JP -I-1)®* column and (ti row ; or the (ti +y) + 1)®* row and 

{n +pY^ column. 

Since in any determinant of order m, we have (v. 7) 

d^D dD dD dD dD 
D 

da^^ da m-l m-\ da„ 1 * da^ m—1 1 w da^ ‘ da^^ , 1 m ffi fTi—1 

we get by applying this to {m=n-\-p) 

or 
u,_ z/ u. 
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In this equation write = n —1 ... 1, 0, and remembering 

that 

we get the series of equations 

Un-.^ x: 

u 
n-2 _ 

2 R... R...R._.R. 

U„ 

n-i n-l 

XU 

n-1 

-^n-3 -^n-3-^n-2 ■^n-2 

^o_ , Ur 
R-R,RjR^' 

Thus 

R,R, R,R, - 

Now the quantities ... X„ are linear functions of ... u^, 

i.e. o£ ... hence we have resolved the given quadric into the 

sum of the squares of n linear functions of the variables ... x^. 

Also the number of positive squares in this sum is the number 

of variations in sign in the series 

and these being unaltered in sign by a linear transformation we 

have the important theorem, that if a quadric be linearly trans¬ 

formed to the sum of n squares, the number of positive and negative 

squares is always the same. This theorem, due to Sylvester, 

has been called by him the law of inertia of quadratic forms. 

8. The discussion of the preceding article, due to Darboux, 

requires modification in certain cases. For example, if the minors 

of order jp — 1 of the discriminant vanish, then all the functions 

Rq... Rp_^ inclusive vanish. In this case Darboux has shewn that 

u can be resolved into the sum of ti — ^ squares, viz. 

A* 
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9. If a quadric, by means of a linear transformation, has been 

reduced to the sum of n squares, 

u — 

the discriminant of the right-hand side being A^A^... if is 

the modulus of transformation, 

A^A^... = ]. 

Two given quadrics 

u — V = 

can by a simultaneous linear transformation 

^i = «5ii3/i+«5i2y2+•••= 2...71) 

be reduced, each to the sum of n squares of the same linear func¬ 

tions, viz. 

“= Avi^ Aj)^ 

'0 = + • • • + . 

for in order to determine the constants, we have first 

n(n — l) equations from the fact that the coefiScients of the 

products must vanish, and n additional equations from the 

condition that the ratio of the coefficients of yf is to be 5^, in all 

equations. 

If w'e form the discriminant of su — v, its value for the original 

quadrics is 

I I.(1). 
and for the transformed quadrics 

A,... A„{s-sXs-s,) ... (s-sj......(2). 

The ratio of the quantities (1) and (2) is hence ... are 

the roots of the equation 

A(s)= I 1=0.(3). 

10. The following resolution is due to.Darboux. 

If we write 

IP ^ dF 
I<—SU — V, = — (4), 
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we have identically by Art. 2 

F—su — v = — 
A(«) 

sa.,-6„ X, 

...(5). 

X. ... X„ 

The determinant on the right is a function of s of order n — 1; 

resolve the fraction into partial fractions, and we get 

1 
su — v= — X 

A' 
Sfln-K - ^i^ln ^ln> 

Sflnl-K — ^i^nn ^nn> 

X, ... 

...(G). 

The determinants on the right are all perfect squares by 

Art. 3, for they are obtained by bordering the vanishing determi¬ 

nant A (s). . Whence 

- V = A . , , , /-r , 

where U^ is a linear function of the form 

U. = d.^X^ -I- ... -t- 

If in the determinant (6) we replace X^ by its value from (4), 

and subtract from the last column the first n multiplied by ... 

and do the same for the rows, the value of the determinant is 

unaltered, but X. is replaced by J (« — s) ^. 

A term is also introduced in the principal diagonal in the last 

place, but since its minor vanishes by (3) we may replace it by 

zero. Thus U^ is replaced by 

dx^ 

= («-«,) K 

where is independent of s; 

su -«i) 

Equating coeflScients of s we get 

v = ^-^ 

which is the required resolution. 

X(sd’ 
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11. An important branch of the theory of quadrics is that of 

their linear automorphic transformation. That is to say, as the 

name implies, the discussion of those linear transformations which 

do not alter the outward appearance of the quadric. So that if 

... Xn are the original, and ... the new variables, 

becomes ^Ojy;y{y^. 

Without entering into a discussion of the general case we shall 

study that particular one which gave rise to the whole theory. 

In the transformation from one set of rectangular axes in space 

to another with the same origin, the distance of a point from the 

origin is the same, expressing this for the two systems 

0^ y^ — x^ + y'^ + 
such a transformation is linear and automorphic, and is known as 

an orthogonal transformation. 

12. The general case of an orthogonal transformation is to 

determine those linear transformations which give us 

< + <+... +x:^y^^+y^^+ ... +y:. 

The theory is due to Cayley, but we shall here give it as modi¬ 

fied by Veltmann. 

Let us consider the following equations 

. A + ■.. + 6, A = + 6,.?/, + ... + 
+ *2 A + •. • + 6,A = +... + 

+ ... + h^,x„ = + 6^^ + ... + 
where the system 5^ is skew, so that 

^ii~ ^.(2). 
The rows of coefficients on the right coincide with the columns on 

the left. 

Let -B = I I = I I . 

SO that .5 is a skew determinant, let be the system of first 

minors. Solving the system of equations (1) we get 

... + 
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The coefficient of in y^ is given by 

"i" + • • • + 

If ^ifikl + + • • • + ^inhn > 

then + 5 = ^^ikhk • 

Now 5 = .B or 0 according as 

0 -. c„ = 

is or is not equal to k, thus 

B 

In the same way 

, _ ^^ik^ 7 _ ^B^^z — B 
^ki Jj > ^ii ~ 

Thus c„=4, 

and we may write 

y, = c„ir, + c,,®, + ...+c,„®„ 

®< = c.,y. + c„y,+ ...+c,.,y„. 

Substitute for x^... x„ from the second of these systdms in the first 

and equate coeflScients of y, and y, on both sides, thus 

+ +C = 1| 
+ •. • + c,„c.„= OJ • 

If we substitute from the first system in the second, we get 

+c„^ = l) 

<^iA. + c,,C2,+ ... +c«iC,^ = 0j • 

Whence we see at once that 

< + <+ ... +x„^ = y,^ + y,^+ ... +y:, 

and thus the coefficients are those of an orthogonal sub¬ 

stitution. 

13. ’ By the preceding article we are able to express the n“ 

coefficients of an orthogonal transformation by means of the 

^n(n — l) quantities 

^12> ^13 

^23 • •* ^2" 

by forming a skew determinant with these, the elements of whoso 

leading diagonal are equal to z. 
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For the case w = 2, let 

B=- 1, X 
-X, 1 

= 1 + X»; 

the system of first minors is 

1, X 
-X, 1. 

Hence the coefficients of a binary orthogonal transformation 

are 
1 - X“ 2X 
1+X“’ 1+X^’ 

- 2X 1 - X^ 
1+X^’ 1 + X^’ 

For a ternary orthogonal transformation 

1, r, - /X = l + V + /x^+z^^ 

- Vj 1, X 

fly -Xy 1 

the system of first minors is 

1 + X*, V + Xfij — fi \v, 

— v-\- Xfi, 1 + fi^y X + fiv, 

ya + Xz^, — X + iiVy 1 + 

Hence the coefficients of the ternary orthogonal transformation 

are 

1+X^-ya^-i/" 

B 

9 + V 
B ’ 

^ v + X/i ^ — fi + Xv 

B ^ B ^ 

1 4" fi^ — X^ — Q X 4" fiv 
B ’ ~B~* 

2 
ya 4- Xz^ 

~B~^ 

^ — X 4" fiv 1 4" z^^ — X* — ya^ 

B ’ B 

If we write 

X = cos/tan ^6y ya = cos ^ tan ^6, v — Qo^h tan ^6, 

where cos^/4- cos^ g 4- cos^ h—.ly 

and .•. B — sec® \dy 

we get Kodrigues’ formulae. 
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For the quaternary orthogonal transformation 

1, a, h, c 

- a. 1, h. -9 
-b. -h, 1 f 
- c. 9> -/ 1 

Then 
^ = l+a^ + 6^ + c^+/2 + / + /l“ + 6>^ 

where 0 =:af+bg + ch. 

And the system of first minors is 

l+r+g^ + h\ 
B^^ — ^a-’/d+cg— hh, 

B„ = -b-c/-gd-^ ah, 

B„ = -c + bf~ ag-hO, 

■B,8 = b+g0 — cf+ ah, 

•8,3= h+fg + ce-ah, 

■833 = 'i- + f+c‘ + a\ 

B^ = -f +gh — bc — a0. 

■81, = “ +/8 - 6A,+ eg, 
B,= l+/=+6^+c^ 

-83, = - ^ +f9 -ab- c0, 

■84, = 9 +fh + b0- ca, 

B,,= a+ h0- ag+ bf, 

-8,4 = -£'+¥““C-^^> 

-834= f+gh + a0-bc, 

£„= l + h^+a^+b^ 

Thus the coefficients of the quaternary orthogonal transforma- 

tion are 

Be,, = 1 - +/^ - 6^ + h'^-c\ 

Bc,^ = 2 (a +f0 - hh + eg), 

Bc,^.= 2 (b + g6-cf -{■ ah), 

Bc,^ =2 {c + h6 -ag+ bf), 

&c. 

14. The square of the determinant of an orthogonal substitu¬ 

tion is unity, for 

I r= I I. 

where -f -t... -f e„,c^, 

i.e. 0a=O, (f„ = l; 

I c,J’’=l, or I c„ I =e, 

where e means ±1. 

15. If is the complement of in 0, then 
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For we have the system of equations 

^11 *h •.. + — 0 

CuCi,+ ...+C„,C^=l 

^lnCi,+ ...+C„„C„,= 0. 

Multiply these equations by G^, C;„ and add, the co¬ 

efficient of is €, the others vanish, thus 

16. Any minor of the system is equal to its complementary 

minor. 

For (7„.. ^p+ip+i ' 

^np+l •• ■ 

by V. 7. But 

= e^ Cu • •• Cip 

•C^P •• Cpp 

by the theorem just proved. Hence 

^11 ... Cip = 
^p+lp+1 ••. ^P+lM 

... Cpp ^np+l ... ^nn 

17. If = I I = I 1 determinants of ortho¬ 

gonal substitutions of order n, then the determinant 

P (X, fi)= I \a^ + /ib^ I 

is not altered by interchanging X and fi. 

For the symbolical expression for P (X, /x) is 

P(X,/x) = {XA+/xPr 

as in V. 8. And as there proved 

P(X,= 
P“) 
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Or, if .4*"’ = 1 = we have by Art. 15, 

P(X,/t)= I X6„ + /ta^ I 

= P{jx,\). 

From this we see, that if from the coefficients of an orthogonal 

substitution of order n we subtract the corresponding coefficients of 

another orthogonal substitution of the same order, the determinant 

formed with these differences vanishes if n is odd. 

18. If we take n quadrics in n variables we may conveniently 

represent them by the system of equations 

u, = {i, j,7c = l,2 ... n). 

With the coefficients we can form a cubic determinant of 

order n which will be an invariant of the system of quadrics 

Zehfuss has pointed out that for three ternary quadrics this gives 

Aronhold’sL invariant, while the auxiliary expressions he gives for 

its calculation are the cubic minors of the second order. 

For the two binary quadrics 

2b'xy+ c'y^y 

it is the harmonic invariant 

aa' — 2hh' + cc. 

The general theorem is that for n, n-ary the determinant of 

class {p 1), which can be formed with their coefficients, is an 

invariant of the system. By allowing all the quantics to become 

identical we get an invariant of a single quantic when it is of even 

order. 



CHAPTER XII. 

DETERMINANTS OF FUNCTIONS OF THE SAJ\IE VARIABLE. 

1. If 2/2 ... y„ are functions of a variable x, and if 

~ da* 
the determinant 

2/1 . 2/2 Vn 

2/" > 2/2'' 2/n 
(1) 

^r\ ...2/r^ 

is called the determinant of the functions yiay^-- - yn> and .is denoted 

^yD(2/^, y,... y„). 

2. If y is any function of x, and we multiply the above deter¬ 

minant by 

0 

y 

... 0 

... 0 

... 0 

combining the columns of D with the rows of the latter, we obtain 

{yy,> yy^ — yy^ =y".0(y„ y,... yj. 

In particular if we put yy^ = 1 in the determinant on the left, 

all the elements in the first column vanish, except the first, which 
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is unity, and the determinant reduces to the determinant of the 

?i — 1 functions 

^ -v.) ± (yA Vn) 
dx\yj Vi " 'dx\yj 

If therefore we put 

D {Vx- yJ = y/ • • • -D (y., y„) = 2/„', 

then n{y^, y^ ... y^= i B (y^, y,' ... yj. 
U\ 

3. If the functions ... are connected by any linear 

relation 

Cj2/i + ^^22/2 + ••• = 

it is plain by differentiating this n—1 times, and eliminating 

... c„ between the original and these n—1 new equations that 

we get: 

■D(y„ y^ ••• y„) = o. 

Conversely if the determinant of the functions ... y^ vanishes, 

then they are connected by a linear equation with constant co¬ 

efficients. We shall prove this by induction; we shall assume 

that if the determinant oi n — 1 functions vanishes, these functions 

are linearly connected, and we shall shew that the same is true 

for n functions. If y^ does not vanish, which would be equivalent 

to a linear relation among the functions, it follows from the pre¬ 

ceding article that since 

i*(y.-yj ••• y«)=o, 

we must also have 

-D(y/. y/— y«')=0- 

Hence by hypothesis the n—1 functions y^ ... y^ are linearly 

connected, i.e. we have 

^^22/2' +^32/3'+ ••• +^^«2/«' = 0. 

Dividing by y^ we get 

or integrating 

s. D. 

+^22/.+ ••• +Cn2/n=0. 

11 
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Thus.if the theorem is true for n—1 functions, it is true for n, 
but it is clearly true for two functions, and hence generally. 

4. From the formula 

■D (y„ 2/2 ••• y») = —(y/. y/ ••• y.'). 

it follows that 

D{y,, y^, y,) = ^D{y;, y[) 

Diy^, y„ y^ = jl>iy^. y.') 

■D(y., y^. y„)=--^>(y/. y,,')- 

The same formula also gives 

D{y:. y/ - y:) = ^D[D(y:, y/), D{y:, y/) ... i)(y/, y;)). 
u 2 

Combining these formulae, w^e obtain the equation 

1 
.D(y.. y* ••• y») = 

■D(y.. y^. yj ••• -D(y,. yJl- 

By repeated application of this method we should obtain the 

theorem. 

If iq, ... v^, ... be functions of Xy and if 

iv, = D{u^y u^... u^y V,) (^=l, 2 ... 71), 

XT- r^/ \' D (lU y w ... Wy) 
then D(«., V 

5. A special case of this theorem is 

-D(y.-.yM. yi« ••• y„. y*, y) 

i>{D(y, y.-i. Vm ••• .y.. y.) ^(y, .’A-i. y^ ••• .y.. .v)l 
i’(yi ••• yi-i. y»« ••• y,) 

which we may write in the form 

.Dfa • ■ ■ y.. y)-P^y, ■ ■ ■ y>-i. .y..! ■ ■ • y.)^_ d I>(y,yi...yt.i,y,^i...y„) 
.0(y,... y,)i>(y,... yj dx -^(y. •••y,) 
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AssumiDg now that the functions ••• are independent, let 

us write 

_ /_ 1 \n+S 

-D(y....yJ 

p (li) = c— ly yi ••• yn) 

■P(y, 2.) = (-i)^ 
;-i -P(y. y. • • • y*-„ y»« • • • y„) 

then the above equation can be written 

Z,P(^)=~PQ,, 

The determinant 

yi > 2/2 ••• ■ yn 

> y.“ - ■ yr 

yr\ y,'”‘“’... yr^’ 

yr. yr - y„“’ 
vanishes ii k <n — l, but if Jc = n—1 its value is D (y^^ ^2 2/n)* 
Expanding it according to the elements of the last row we get the 
system of equations 

y.2, + yA +•••+ y,2» =0' 

yi'\ + 2/i\ + ••• + yn"’^» =0 

y.'”A + y.'*A+-+yr% = o 

y,'”‘‘'Zl + + ••• + 2/n"'% = 1 

If we write = y^z “ + y^^Zj'*’ + ... + y„''’zj*’, 
we can write these more briefly 

5oo=0, ^10 “ fl ••• ^n-80~fl> ^n-10~l* 

Now we have 

”1" ^*-11 

r « ~ ^kO "I" + 5^._5 

"I" • • • d" '^0 

11—2 
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lik <n — l, it follows from these equations that 

5a/3= 0, if a + yS <w — 1. 

If A; = w — 1, it follows since 

...+(-!)’• = 0 

that 5„_2i ... are alternately equal to + 1 and — 1. 

If^^ = n, we conclude in the same way that 

^nO “ ^n-U ~ ^n-22 ~ * * * ~ (“" ^ ) * 

Hence we get the following theorem: The expression is 

equal to zero when p-{-q<n—l, and equal to (—1)* when 
^ ^ — 1. 

7. Among the relations just established we have 

+ ^^2 + 

+ 

^ ^ 0 

+ = 0 

(n-2), 

'2/x+^rY+ + = 0 

+ = (-1)"" 

If D 2j ... 2^„) = 0 vanished, it would follow that since 

(B). 

= 0, 5, =0 ... = 0. 

then would also vanish, while its value is (— l)”"h Thus the 

functions z^... are not linearly connected with each other. 

Comparing the systems (A) and (B) it appears that the relation 

between ^ reciprocal one, if we neglect the 

sign when n is even. From each relation between these systems 

we deduce a new one by interchanging 

yx> 2/2 ••• yn> ^x> ^2 ••• 

with (-••• (-y., ... y„. 
Thus from the equation 

^ / 1 \n+fc ^ Cvi ♦ • ♦ Vk-i* • • • yJ 

we deduce 

-t   (_ 1 \fc-l ('^l . • . > ^k+l • • • -^n) 

^ il(2.,2,...2j • 

In consequence of this we shall call z^ ... z^ the conjugates of 

Vx'-yn^ 
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8. If we form the product by rows of the two following deter¬ 

minants 

Vx ••• Vuy 1/k+l ••• I/n 

yr' ■■■yr\ y?;.” - yr“ 

yr ••• y“’. ytlx - y* 

y 

y.'”-" - yr\ yr;." 

1 .. 0, 0 ... 0 

0 •• 1, 0 ... 0 

•• ^k+l 

, (n-fc-l) 
1 

(n-fc-l) 
" ' * 

Jn-k- 
^k+1 

-1) («- ... 
kr-\) 

the first of which is Z) ... 2/„), the second D ... we get 

y. ••• Vky ^00 • • • jfc—1 

yr ••• ^k-10 • • * 

y.'*’ - y."’. ^kO • • • ^kn-k-1 

y.'*-" ••• yr^\ ^rt-10 • * • 

In this determinant the block of elements common to the first 

k rows and last n — k columns all vanish, whence it reduces to 

yi ••• yk ^kO • • • 

yr'- yr' ^«-lO • • ’ 

The first of these =D y^), in the second all the elements 

to the left of the second diagonal vanish, whence its value is 

{n-k) (n-A: + l) 

(-1) ^ < 

= 1. 
Am—ft—1 

Thus we have 

(y, • • • yJ D (V. • • • O = -D (y. • • • y*)- 

If A; = 0 we have 

^(y.-y»)-D(^-0=i. 
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9. From this last equation we get 

p fwi = (■— I")” ^Siyiy'— y.J 
y») 

yn)-0(2.,as-"a. 

-P{y) = (-!)" y. y. ••• y» 
y"’. y“-yJ" 

1, 0 ... 0 

0, ... Z„ 

y'-’.yr-yj"’ 0, 

“ ( y» ^00* ^01 *** ^Oa-l 

y"’. S.O. *1. ••• S.n-1 

. 2/ > ^n0> ^nl * • • ^nn-1 

Similarly we should get 

P(^) = (-l)« ... 

* ^00 > ^01 • • • ^0>i 

^n-10> ^n-11 ^n-ln 

10. These determinants occur in the theory of linear differ¬ 

ential equations. Thus, if we have the equation 

%y + + ... + = 0 

where the quantities a„, ... do not contain y. Then if ... 

are n particular integrals, we have the n equations 

+ • • • + dnUr = 0 (i = 1, 2... m). 

eliminating the as we get 

y, =0, 

y.. yi"’ ••• y.'”’ 

lyn.y„'‘'---y»'”M 

D{y, y. ...y„) = 0. 
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If we solve the equations for we get 

y.yy,"'- .y.'"-'". y.'"’ 

y.. y,"'-- 7/ 7/ ' Un y Un y.y 

-0 (y., ••• yJ = exp. . 

11. Though not immediately connected with the subject of 

the present chapter we shall give Hesse’s solution of Jacobi’s 

differential equation. 

This equation is . 

+ + ^3 (^dv - 7}d^) = 0, 

where A^ = + a.^ (^’ = 1, 2, 3). 

We can write the equation in the form of the determinant 

V. 1 

d^i dr), 0 

= 0. 

3 

CC ^ ^1 
Now let f = -, v—~y the equation becomes 

z z 

X, y, z\=0. 

zx - zx^ zy — yz\ 0 

Ay Ay A 

Multiply the first row by z' and add it to the second, this 

divides by Zy and we get 

a;, yy z =0. 
t t t 

Xy yy z 

A^y A^y Ag 

Now let us multiply this equation by 

7l 

^2> T2 > 

Ay 73 

p,= (x^x-i-/3,y + %z. and let 
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Also assume that 

'^iPi = + A7r 

Then 

Pt> ft. ft =0. 
dp„ dp„ dp, 

^iPl. ^2^2* ^sPs 
i.e. 

% rfft ^3 

Pi’ k’ ft 
= 0, or log ft. log ft. log ft 

1, 1, 1 
1, 1, 1 

^1» ^3» ^8 ^ 
or, as we may write it 

p,’^-^.p,^’-^'.p,^--^=a 

Since we assumed that 

Equating coefficients of cc, y, z 

a, K-\) +/3iO„ + 7,o,s=0. 

«i fti + («« ->■) + 7,as3= 0, 

“.«8t+/3.aaj + 7.(«33-’^)=0. 

Hence eliminating aj, ySj, 71, we see that \y \y \ are the 

roots of the equation 

'll \ “.3. ^13 

“33-^. ^23 

®31> ®32> «33- 



CHAPTER XIII. 

APPLICATIONS TO THE THEORY OF CONTINUED FRACTIONS. 

I. The application of the theory of determinants to continued 

fractions is one of its latest developments, and gives great facility 

in the discussion of these functions. 

As usual in English mathematical works we shall denote the 

continued fraction 

' a„ + — 

by h 
' + a« + ag + 

Such a fraction is called a descending continued fraction. 

In addition to these we shall discuss a less known form of 

continued fractions, which, however, is historically the older form 

of the two, namely, the ascending continued fraction 

which, in an analogous manner, will be denoted by 

**’ a^' 

Our object is to establish a determinant expression for the 

convergents to these two forms. 
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2. If we write down the system of equations 

h^x = + x^ 

b,x^ = a,®, + ®, 
63®, = a,®, + ®^ 

we see that 

a,+~ 

OH • • 
Hence — is the continued fraction 

X 

i... 

d" 

3. If we are to determine, the convergent, i.e. the value of 

the fraction when we stop at —, we must suppose that £c„+i and 

all succeeding cc’s vanish, whence we have the system of equations 

b^x = a^x^ + x^ 

0 = -6,®, +a,®, + ®, 

0 = - 63®, 4 a^x, + X, 

0= -6A-i + «A- 

Solving this set of equations for we get: 

> 

I—
1 0 ... II 6,®, 

I—
1 0 ... 

-63. ^2 > 1 ... 0, > 1 ... 

0 , -K ••• 0, -h. «3 ••• 

0 , 0, 

I—
1 

j
 

0
 0, 0 , 0 --.-K, 

0 , 0, 1 

0
 

Thus 

ttj , 1 ... 0,0 

0
 

0
 

0
 

I—
1 

e
"

 •
0

 

0
 

1 0
 

0
 

I—
1 1 

0 , 0 ... a,.., 1 0 , - 63- ®S ••• 0 > 0 

0,0... -b„, a„. 0 , 0,0... a„_i, 1 

0
 

0
 

0
 1 CT

* 
s ©
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Or 
X 

Pn 
9.n 

say. 

Where 

, 1 , 0, 0 ... 0,0 

a, , 1, 0 ... 0 , 0 

0 , -6^, a,, 1 ... 0,0 

0 , 0 , 0, 0 ... a„_„ 1 

0 , 0 , 0, 0 ... -6„, a„ 

if we expand (ill. 24) according to the elements of the last row 

and column. 

Similarly 

, 1, 0, 0 ... 0 , 0 

- h 2> ^2 > 1, 0 ... 0 , 0 

0 > ^3 » 1... 0 , 0 

0 , 0 , 0, 0 ... ^n-l> 1 

0 , 0 , 0, 0 ... -K a, 

.qn- .1 + %»- -2* 

Since > we can write the convergent in the form 

4. The determinants of the form have been called con¬ 

tinuants by !Mr Muir. Since 

% = Ctn7n-1 + ^n?n-2> 

if is the number of terms in the continuant of order n 

an equation of differences which gives 

Since u, = 1, u^ = 2, we have 

«.^ {(!> V5)”"‘ - (1 - V5)”*‘} - 2-« V5. 
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It is easy to shew by the binomial theorem that this number is 

an integer. Prof. Sylvester obtains this number in the form .of the 

series 

1 + (n — 1) + 
{n - 2) (n - 3) 

1 . 2 
, (w - 3) (n - 4) {n-o) , 

1.2.3 

5. The value of the continuant is the same as that of the 

determinant 

?.'= ki. «■> 0 ••• 0 

1 ^31 ^2 • * • ^ 

0, rfj, ... 

0, 0, 0 ... a„ 
provided only 

= - • (r= 1, 2 ... n-1). 

This is clear if we expand by ill. 24, according to the elements 

which stand in the last row and column. For then 

= (^nSn-l ~~ <^n-lS' n-S 

= «»?',-!+ 6,9''„-s. 
while = Hence the equation of differences 

being linear. 

Thus we can also write 

11 8 

I—1 1 0 , 0 ... 

h. ^2 > -1, 0 ... 

o; -1... 

0, 0 , a, ... 

6. The value of the continued fraction is not altered if we 

replace 

by 

For the quotient ^ is unaltered if we multiply numerator 

and denominator by any the same number. If we multiply both 

by k, the row 
... -6^, 1 ... 
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in each is replaced by 

... — Jcb^y ka^, k ... 

and by Art. 5, in place of the last k, we can write unity if we 

replace by kb^^^. 

Since then we can write the continued fraction 

in the form 

A A.... h 
cii 4“ CT/g + + 

, k , k^ , k^ , k^ 
b — 6- — 63- - 

k-]r k-{- k-]r ***+ k 

can be written in the form of the skew determinant 

k , , 0,0... 

k , Oj , 0 ... 

0 j-ofj, k yOL^... ’ 

0 , 0 , -«3, A; ... 

where 

Thus the convergents to a continued fraction can always be 

represented by the quotient of two skew determinants. 

7. In any determinant D we have 

^ d^D ^ dP dP dP dP 
da,ida„„ da^ da,„ da„^' 

For P take the continuant (Art. 5), then 

(fD 1 dP c 

da,,da„„ ^ ‘ ’ “ ^'n-l > 
1 

dP 77 7 dP . 

g.Pn-i-i.-iP.=(-1/■■■K- 

8. In the case of the ascending continued fraction 

vt h± 
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it is clear that if the n"* convergent be —, the scale of relation is 
<ln 

Pn ^ ^nPn-1 + K 

S'n ««$'„-! 

Hence ^n — ^1^2 ••• ^n- 

To determine 2\ we have the system of equations : 

p, =\ 

=K 

=K 

-a.-lK-ii+i’n-l =6.-1 

-«,i>,-i+p,=6„- 

The determinant of this system is unity, all the elements to 
the right of the leading diagonal vanishing; 

••• i’»= 1.0, 0 ... 0 , 6, 

-a„ 1, 0... 0 , 
0 , - a,, 1 ... 0 , 63 . 

0 , 0, 0 ...' 1 , 6„., 

0 , 0, 0 ... -a„, \ 

Multiply all the columns except the last by — 1, and move the 
last column to the first place; the determinant is unchanged, thus 

6,, -1, 0 ... 0, 0 

63, ttj, - 1 ... 0, 0 

63, 0 , a, ... 0, 0 • 

0, 0 ... 0, a„ 
The n"‘ convergent to the fraction is 

••• 

The number of terms in y)„ is n. 
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9. By means of these determinant expressions for the conver- 

gents we can transform an ascending continued fraction into a 

descending continued fraction. 

In the determinant of the preceding article multiply the 

row, beginning with the last, by and subtract from it the 

(r— 1)®* row multiplied by 6^, and do this for all the rows. The 

determinant is altered by the factor 

k={b,b, ... 

and 

Pn=^iK “1 > 
0 

0, 0^26^+62, — 

0, 

0, 0 

0, 0 

0, 0 

Similarly, since 

• • ^n-2^rt-3'f^n-2> ^n-3 J ^ 

* • ^ ^n—2^n—1 > ^n—l^n—2”1” ^n—1 > ^ ^n- 

0 •• 0 y 

= a^a,. •«« 

= 
-1, 0 . .. 0 , 0 

0, * 
-1. .. 0 , 0 

0, 0, «3 • 
.. 0 , 0 

0, 0, 0 ., •• a,-i. 
-1 

0, 0, 0 .. . 0 , «« 

_ 
-1 f 0 • • • 

+ ... 

0 0 0 ... aX-i+K 

Now on inspection it is clear that these determinants j5„ and 
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are continuants as defined in Art. 8, whose 2"**, ... (?i — 1)** 

rows have been multiplied hj b^j ... b^_^ respectively, also 

Pn = 

Whence by Arts. 3 and 6 

9.n ” ^2^1 + ^2 “ ^3^2 d- &3 '' ' Ct„-l^«-2 + ^«-l ” ^«^«-l + ’ 

which gives us a rule for transforming an ascending continued 

fraction into a descending continued fraction, the number of 

quotients in each being the same. 

10. We can make immediate use of this theorem to deduce a 

formula of Euler’s, by means of which a series can be converted 

into a continued fraction. 

Take the series 

... +(- 

A,, 1, 0, 0 ... 0 

A,, 1, 1, 0 ... 0 

A3, 0, 1, 1 ... 0 

A„, 0, 0, 0 ... 1 

as we see by subtracting from each row the one below it, beginning 

with the last, when the determinant reduces to its principal term. 

Multiplying each column after the first by — 1, we reduce the de¬ 

terminant to the continuant for an ascending continued fraction. 

Thus the above series is equal to: 

^ 1 -1 ■■■ — 1 -1’ 

and transforming this by the rule just obtained to a descending 

continued fraction 

A, 

A.-f- A j “^2 + 

An-2 

An “ A„_j 

A A3_A,A3 A^_3A„ 
1 + Aj — ^2 + Ag — Ag-h A„_i —A„ 
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If the original series is 

® A, AjA, - 

we can obtain its form as a continued fraction by altering the con¬ 

tinuant to S in accordance with Art. 6, when we get 

1 A* 
A^ — A^ + 

11. Various generalisations of continued fractions, have been 

devised by Jacobi and others. The following generalisation, due 

to Fiirstenau, is taken from a review of his memoir by Gunther. 

If X and y are any two real numbers, and we write 

s'-.+j.»,-.+! j.-.+i'- 

where a and h are the greatest integers contained in x and y, 

then on substituting we have : 

and 

s. D. 12 
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If now all that stands to the left of one of the vertical lines be 

called a first, second ,.. convergent, and if we denote the numera¬ 

tors of X and y hy while the denominator, which is clearly 

the same for both, is called iV^, we shall have 

(F, X, N),,, = a,,, (r, X, N), + h,,, {r, X, iVV: + {Y>X, X),_,. 

.Thus the equations have four instead of three terms, and 

we get 

A’ = 

6,. 1, 0 .. . 0 

-1, a,, 6.. I.. . 0 

0, -1, *3- . 0 

0, 0, 0, 0 .. . a. 

6.. 1. 0, 0 .. . 0 

-1, K. I.. . 0 

0 , K- . 0 

0 - 0 . 0, .0 .. .. a. 

a,, 1 , 0 . 
•• 

-1, *3. I . .. 0 

0 , -1, «3. .. 0 

0, 0, 0, 0 . .. ttp 

Corresponding to the theorem of Art. 7 we have now 

Y V V =1 
. p-\ j 

•^p+i ^p-i 

X X X 

12.- If ordinary continued fractions be called fractions of the 

first class, those in Art. II may be called fractions of the second 

class. 

Fiirstenau extends the idea still further, and summing up bis 

results we may state them as follows: If we seek to determine 

n quantities X as fractions of the form n 

X. 

^ X’ 
= 

X ••• N 
X, 
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each such fraction can be written as a continued fraction of the 

(m —I)*** class. The^** convergents to these continued fractions 

take the form 

and if 

a;. 

- iV, 

«11 
... ^In+l 

«21 ^3n+l 

^n+11 • • • ^M+ln+1 

are the quotients entering into the continued fractions, then 

^pq “k ^<ip^p-qq + • • • + Ojn+lp^p-n-lq> 

^P— ^IP^P-1 + ^2P^P-2 + • • • + <^n+lp^p-n-l- 

The quotients X and N are always connected by the equation 

^pi> ^p-il> ^p-21 ••• ^p-nl 

Y Y Y Y ■^P2> “^^-22 ••• ■^p-rt2 

^pni ^P-in> ^P-2n • • • ^p-nn 

XX X X 

= (-ir. 

The author also shews that the real roots of an equation of the 

order can be represented as periodic continued fractions of the 

(n — class. 

12—2 



CHAPTER XIY. 

APPLICATIONS TO GEOMETRY. 

1. The axes being rectangular let the co-ordinates of the 

angular points of a triangle ABG be {x^, {x^, {x^, y^. Tlien 

if A is the area of the triangle it is plain from the figure that 

A = trap. BN — trap. BL — trap. CL 

=i (^2+y,) (‘>^2 - ^s) - J +yJ - i {y>+y.) (®, - 
2A=ys®2 - VA+^^yi - *,y8+^xy^ - ^^y. 

= 1, 1, 1 = 1, yx 

1, y^ 

yi> ^2* Vz 1. ®8. y. 

If the axes were oblique this would have to be multiplied by 

the sine of the angle between the axes. Thus 

2A=sin {XY) 1, 1, 1 

^2’ ^3 > 

Vz 



APPLICATIONS TO GEOMETRY. 1, 2.] 181 

where (XY) is the angle between the axes. This form is’however 
not often used, and unless the fact is specially mentioned the axes 
are supposed to be rectangular. 

If we multiply the first row by and subtract it from 
the second, then the first row by and subtract it from the third, 
we get 

2A = 

2/2 

It must be noticed that the area of a triangle changes sign if 
we alter the cyclical order of the letters. Thus AB 0 and A CB are 
equal triangles, whose areas are opposite in sign; ABO 0,nd BOA 
are equal in magnitude and agree in sign. 

2. Let the co-ordinates of the angular points of a tetrahedron 

ABGD be --- (^4> ^ volume. 

Let A be the area of the triangle BOB, and let the equation of 

its plane be 

{x — cos a 4- (y — 2/2) cos /3 4- (« — cos 7=0. 

The projection of the triangle BOB on the plane of xy is 
A cos 7, and the co-ordinates of its angular points are 

thus, by Art. 1, 
(®a. y^ (“^4. yy> 

2A cos 7 
^3 - ^2> ^4 “ ^2 

Similarly we get 

2 A cos /3 = ^3-^2> ^4- ^2 2A cos a = 2/a-ya. ya-Fa 

^3“^2> ^4“ ^2 
) 

^a “ ^2* ^4 “ ■^a 
If p is the perpendicular from A on the plane BGBy 

-p = {x^ - x^ cos a 4 (yi - yjj) cos /3 4- {z^ - cos 7. 

Hence 

-6F=-2Ap 

= 2 A cos a (ir, - + 2A cos /3 (y. - y,) + 2A cos y 

1 II ys-yzy 2/4-^2 + (^1-^2) ^37^2. ^4-^2 

1 1 1 "1
 

y>-y%> Vi-y, 
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^4-^2 

Vi-y^^ Vz-y^i^ y^-y^ 

^z-^2> ^4—^2 

1, 1, 1, 1 

x^ — X^, 0, X^ X^f x^ — x,^ 
y. -y^. 0. y>-y^> y.-y^ 

z. - 0, z,-z^, z,-s. 

Or if in this last determinant we multiply the first row by 

x^, 2/2, ^2 it to the second, third and fourth rows re¬ 

spectively, 

6V= 1, 1, 1, 1 

a?,, a-g, a;, 

yi> yz> y3> y, 
■S'gJ 2?g, 

3. If the tetrahedron be referred to oblique axes through the 

same origin, and if the cosines of the angles these make with the 

rectangular axes be given by the scheme 

X Y 

X h h K 

y m, m2 ^3 

z ^2 

X = + 1^4 d" 

Whence 

1, 1, 1, 1 = 1, 1, 1, 1 1, 0, 0, 0 

x^, x^, ajg, x^ x, ', x. 0, Zj, m^, 

yv ^2* 2/3* ^4 y.. y;> y.. y. 0
. 

K.^
 

^3> ^4 X,, Xj, z,, z. 0, 2g, mg, Wg, 

Now let 

m^. 

mg, Tlj 

4. m3, Tlj 

Then remembering that 

IM m,m2 + = cos XY, &c., 
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we have 
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= 1, cos XY, cos XZ 

cos YX, 1, cos YZ . 

cos ZXy cos ZYy 1 

This determinant is'usually called the square of the sine of the 

solid angle, contained by the oblique axes in analogy with the 

determinant 

&m^XY= 1, cosZF 

cos YX, 1 

in a plane. Thus 

D^ = sm^(XYZ). 

And in oblique co-ordinates 

6F= 1, 1, 1, 1 sin (XYZ). 

• Z,, Z,, Z3, Z, 

L, Y„ Y„ Y, 

4. From the determinant expressions in Arts. 1 and 2 we can 

at once write down a number of geometrical relations. 

If the distances x be measured along a straight line from a 

fixed point, we see that 

1, x^ = (x^ — xj = (ki) 

1, ar, 

is the distance between the two points marked h and i. The 

determinant 

I> ^1) 

I> ^2 
1, ^g, 1, ^3 
1, X^y 1, 

vanishes identically, because it has several columns alike. Ex¬ 

panding it by III. 6 according to products of minors from the first 

two and last two columns, we get 

(12) (34) + (13) (42) + (14) (23) = 0. 
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Or, if we call the points Ay By Gy By this is the well-known relation 

between the segments formed by four collinear points 

AB, GD + AG.DB+AD.BG^O. 

If we expand the vanishing determinant 

I 1, y,. 1. ‘Oi, y, I (i=i,2...6) 
according to minors from the first three and last three columns, we 

get no geometrical relation, the terms cancelling each other in pairs. 

But if we expand the determinant 

|1. y,. 1, a;,, y,, ^,1=0 (i = l, 2...8) 

according to the products of minors from the first and last four 

columns we get an identical relation of thirty-five terms between 

the volumes of the tetrahedra, formed by eight points. 

5. Again, for five points 

1, 1, 1, 1, 1 

1, 1, 1, 1, 1 
/y* /vf /y* />* 

*^3> *^6 

yi> y^ 
Z^y Z^y Z^y Z ^y Z^ 

If = volume of tetrahedron (2345) and we expand the deter¬ 
minant according to the elements of the first row, by iii. 10, 

we get 
^1+V2+^3 + ^4+V6=0. 

6. By the theorem V. 4, 

1, 1, 1 1, 1, 1 = 1, 1, 1 1, 1, 1 

2/3 ^3 ^1’ ^1’ ^2 ^3J ^3 

y^y y^y yz 'nv % yv Vx, y^ 

. 1, 1, 1 1, 1, 1 + 1, 1, 1 1, 1, 1 

i^y ^3 ^2> ^8 ^zy fi ^zy ^2> ^3 • 

y„ v^y % Vxy y^y Uz yi» v^y % %y y^y yz 

Or if the two sets of three points be called AB Gy BEFy 

ABGx BEF= ABE x FBG+ AEFx BBG+AFB x BGE 

is a relation between triangles. 
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The product of the two determinants 

1,1,1,1 1, 1, 1, 1 
X^y 

fl. f2> fs- ^4 

Vii Vzi 2/4 Vi, V„ V,, Vi 

?3. r. 

can be represented either as a sum of four terms 

1,1, 1, 1 1, 1, 1, 1 + . 

^3> fl f2. f3. f.. 

Vv Vv ■>?2. ’?3. Vi, Vi 

^3. ^3. 

or as the sum of six terms 
^2. K^,Ki, K 

1. 1, 1, 1 1,1. 1,1 +. 

^2 fsJ ^4 

Vv V2’ Vi) V2 ^4» ^3^ ^4 

■2'j , Z^y ^^y 
?4> ‘^3> “^4 

Or calling the two sets of points ABGD, EFGH, we have the 

identical relations between the volumes of tetrahedra: 

ABGB X EFGH^ABGE x FGHD-ABGF x GHED 

+ ABGGxHEFD-ABGExFGED 

ABGB X EFGH = ABEF x GHGB + ABGH x EFGB 

+ ABEG X EFGB + ABEFx EGGB 

+ ABEE X EG GB + ABFG x EEGB. 

Application of Alternate Numbers in Geometry. 

7. In applying alternate numbers. to geometry, a number 

stands for a point in a flat space whose dimensions are one less 

than the number of units. 

To begin with a plane, the units e^, e^, e^ stand for the 

vertices of a fundamental triangle ABG. Any other number 

P= xe^ + ye^ + zf’g 
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stands for some point in the plane of the triangle. It is generally 

convenient to assume that 

x-^y -\r z — \ 

so that Xy y, z may be taken to mean the ratios of the triangles 

PBCy PCAy PAB to the triangle ABCy though this is not neces¬ 

sary. 

If P and Q are two points, then 

mP -hnQ 
m 4- n 

is a point in the line PQ, dividing PQ in the ratio m : n. Thus 

^ (P+ Q) is the middle point, and P — Q the point at infinity of 

PQ. 

Similar definitions hold for a space of three dimensions. 

Four points ABGD being taken and represented by the units 

e^y e^y any other point in the space is represented by 

P = xe^-\-ye^-\-ze^^we^y 

where if we choose we may write 

x-\-y + z-\- w=\y 

X being the ratio of the tetrahedron PBGD to ABGD. 

And so on foe a space of any number of dimensions. 

Then a binary product is a unit length measured on the 

line joining the points e^y or the distance between the points 

A ternary product ejejBt is a unit area measured on the plane 

of the points e^y 6^, or the area of the triangle formed by the 

points e^y e^y And so on. 

In a space of two dimensions the product of three points is 

the area of the triangle they form referred to the fundamental 

triangle. 

Now if + 2/1^2 + 

Q = iE/.+ ... 

R = x^e^ + ... 

PQR= x^y y^y z^ e^e^e^. 
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And — ABC — A, the area of the fundamental triangle, so 
that in areal co-ordinates 

PQR = y,, s, A. 

y,> 

Similarly in a flat space of three dimensions if 

^lW4= ^ 

is the volume of the fundamental tetrahedron, the volume of the 

tetrahedron formed by four points is 

FQBS= V. 

^2> '^2> ^2 

y3> 'S'g, Wg 

*^*4 

Similar definitions may be stated with reference to flat spaces 

of more than three dimensions. 

The assumption which has been made throughout the present 

work, that the product of all the units of a system is unity, 

receives here its justification and explanation. For, geometrically 

speaking, the product of the units is the measure of the funda¬ 

mental figure of the space considered, which is our unit of 

measure. In a plane, for example, it is the area of the triangle 

of reference, in ordinary space of three dimensions the volume of 

the tetrahedron of reference. It is no part- of the plan of the 

present treatise to develop the geometrical applications of alter¬ 

nate numbers ; for these we must refer to the memoirs and works 

of Grassmann and Schlegel. 

Angles between straight lines. Solid angles. Spherical Jigures. 

8. With rectangular axes let 

'^1 ^1’ y'i> 

^2, n^ 
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be the direction cosines of two sets of straight lines, then if 

cos (ik) = + n.T/^ 

is the cosine of the angle between the line of the first and 
of the second system; if we compound the two arrays, we get the 
determinant 

I cos {ik) I. 

Hence by IV. 2, if there are two sets of four straight lines 
we get 

cos (11) ... cos (14) = 0.(i). 

cos (41) ... cos (44) 

If there are two sets of three straight lines a, 6, c; /, g, h, 

cos af, cos ag, cos ah II M,. J'l 
cos 6/, cos hg, cos hh k’ ”2 
cos c/. cos cgy cos ch 4. \> /‘s- "3 

= sin (a6c) sin (^A).(ii). 

If there are only two straight lines in each set 

cos (11), cos (12) = Xj, +.... 

cos (21), cos (22) 

Now if 71, z/ be the directions of the shortest distances between 

the lines of each pair, 6, <f>y the angles between the pairs 

= sin $ cos {nz), &c. 

.*. cos (11), cos (12) = sin 6 sin cos [nv).(hi). 

cos (21), cos (22) 

9. If in the relation (i) of Art. 8 the two^ sets of straight lines 
coincide with one set of straight lines a, 6, c, d, we have 

. 1 , cos {ah)y cos (ac), cos {ad) = 0. 

cos (6a), 1 , cos (6c), cos {bd) 

cos (ca), cos (c6), 1 , cos {cd) 

cos {da)y cos (c?6), cos {dc)y 1 
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This is the identical relation between the mutual inclination 

of four straight lines in space, or also the relation between the 

sides and diagonals of a spherical quadrilateral. 

If we write - cos {AB) for cos {ah), or what comes to the same 

thing change the signs of the elements in the leading diagonal, it 

becomes the identical relation between the cosines of the dihedral 

angles of a tetrahedroil formed by four planes A, B, G, D perpen¬ 

dicular to the lines a, 6, c, d. 

10. If the two straight lines, marked 1 coincide with two 

straight lines u, v; while those marked 2, 3, 4 coincide with a 

set of oblique axes x, y, z, 

coswu, co^ux, coswy, cosws = 0, 

cos^rv, 1 , cos icy, co^xz 

cosyz;, cosya?, 1 , co^ yz 

co^zv, co^zx, cos.^y, 1 

which gives the cosine of the angle between two straight lines u, v, 

referred to a set of oblique axes x, y, z in terms of their direction 

cosines. 

11. As another example of the use of the same formula, let 

ABC, A'B'C' be two spherical triangles, 0, O' the centres of the 

small circles circumscribing them. Fpr our two sets of straight 

lines take the lines joining the centre to O' ABC, 0 A'B'C'. Then 

if 00' — and R, R' are the radii of the circumscribing circles, 

we get ‘ 

cos cos R', cos R', cos R' = 0. 

COS.-R, cos(J.J.'), cos (A5'), cos (A(7') 

cos-R, cos (5J.'), co^{BB), cos (BO') 

cosR, cos {GA'), cos {GB'), cos {CG') 

We can write this 

cos(fsin(A5(7)sin(A'^.'(7')=—cosi2cos-R' 0, 1 ... 1 

1, cosAA'...cos(^(7') 

1, cos((7A')... cos (C G') 
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If the angle at which the small circles cut is 

cos (ft = cos R cos R' — sin R sin R' cos yjr; 

and the above formula can be written 

(1 — tan R tan R cos '^) sin (ABC) sin (A'B'G') = 

_ 0, 1 ... 1 

1, cos(AA') ... cos(J.(7') 

1, cos (CA')... cos((7(7') 

If the two systems coincide = tt, and we get 

sec^i?, 1, 1, 1 

1, 1, cos c, cos b 

1, cos c, 1, cos a 

1, cos b, cos a, 1 

a, b, c being the sides of the spherical triangle. 

12. Similar relations can be developed in the same way for a 

plane. 

In a plane we can shew that for two sets of three straight lines 

cos (11), cos (12), cos (13) =0, 

cos (21), cos (22), cos (23) 

cos (31), cos (32), cos (33) 

and then deduce 

1, cos C, cos B = 0, cos (a;?/), cos (a?a), cos ((cb) = 0, 

cos (7, 1, cosJ. cos (a?/), 1, cos(a6) 

cos5, cosJ., 1 cos (by), cos (6a), 1 

similar to the equations of 9 and 10. 

13. Next, let us compound two arrays 

1, 1, -- /Xj, - 

1, Ipf Ij ^p» 

We get the determinant 

I 1 — cos (ik) 1 = 1 2 sin^ (ik) |. 
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(i). 

16 

Hence, by iv. 2, for two sets of five straight lines 

sin*-J(11) ... sin^-|(15) =0 

sin^ ^ (51) ... sin^ ^(55) 

For two sets of four straight lines a, by c, d; a, h\ c\ d\ 

= - I 1, TO,, TO, I X I 1, fl„ K, I 

1, 2, 3, 4) .(ii). 

sin*-|(aa')... sin^ J {ad') 

sin^ ■|(c?a')... sin^^ {dd') 

Expanding the determinants on the right according to the 

elements of their first column, our determinant 

= {sin (bed) + sin {cad) + sin {abd) — sin {abc)} 

. X {sin (b'c'd') + sin {cad') + sin {a'b'd') — sin {a'b'c')]. 

For two sets of three‘straight lines, our determinant is 

1 — cos (11) ... 1 — cos (13) I 

1-cos (31) ... 1 - cos (33) 

or 

o
 

o
 

= 1, -1, ... -1 1 

1, 1 - cos (11)... 1 - cos (13) 

1, .. 
1, — COS (11) ... — cos (13) 
1. 

1, l-cos(.31)... 1-cos(33) 1, - cos (31) .. — COS(33) 

This is equal to the sum of the products of determinants of 

the third order taken from the two arrays. Omitting the term 

1 >
' 1 1 = — COS (11) ... — cos (13) 

4. 

4. «»S. 

1 1 

r<
 1 — cos (31) ... — cos (33) 

we get 

0, 1 ■ ... 1 

1, cos (11)... cos (13) + I 1, TO, TO I I 1, /X, J/1. 

1, COS (31)... COS (33) 

If the straight lines be called a,b,c; a, b', c, and X^ 
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are the directions of the shortest distances between 6c, ca, a6, 

we have 

11, Z, m I = sin (6c) cos + sin (ca) cos + sin (ab) cos (iV^g^), 
11,X, /j,\ = sm{b’c)cos{N\2)+sm{c'a)cos{N\z)+siTL{ab')cos{N\z), 

and similarly for the other determinants. In particular, if a6c lie in 

one plane, and a'b'o in another, the normals to the two planes 

being N, N'y the value of the determinant is 

{sin(6c)+sin(ca) +sin(a6)} {sin(6V)+sin(c'a') + sin(a'6')} cos (iOT'), 

viz. this 

= - 0, 1 ... 1 

1, cos (aa) ... cos (ac) /••- x 

1, cos (ca') . .. cos (cc) 1 
For two sets of two straight lines we-deduce in the same way, 

if i?, r are the directions of the external bisectors between them, 

0, . 1, 1 ^ 

1, cos (11), cos (12) 

. . a6 . a 6 / t) \ 
— 4 sin sm . cos {Mr), 

1, COS (21), cos (22) 

14. If we compound the arrays 

h> »»1. «1.1. 0 I'l, 0, 1 

h, 3, 0 

0, 0, 0, 0, 1 o
 

o
 

o
 

1—
i 

o
 

we get the determinant 

cos(11) ... cos (It), 1 

cos (tl) ... cos {{{)y 1 

1 1, 0 

Hence for two sets of five straight lines 

cos (11) .. . cos (15), 1=0. 

cos (51) ... cos (55), 1 

1 ... 1 
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For two sets of four lines 

cos (11)... cos (14), 1 =— m, n\\\, fjb,\ v\, 

cos (41) ... cos (44), 1 

1 ... 1, 0 . 
and so on. • 

But these are not new theorems. In the first for example, if 

we expand by ill. 24, according to products of elements in the last 

row and column, each term vanishes by Art. 8. 

On Systems of Straight lines. 

15 If x-p ^y-q_z-r 
cos CL COS S COS 7 

be the equations of a straight line, then 

a = cos a, 6 = cos p, c = cos 7, 

/= q r , g= P \, h= p q 
. cos 13f cos 7 cos 7, cos a j cos a, cos 

are called the co-ordinates of the line. It is plain that • 

a/+ bg-\- ch- 0. 

16. If the constants belonging to two straight lines be denoted 

by the suffixes 1 and 2, the equation of a plane through the 

second line, parallel to the first, is 

y-q^^ ^-'^2 =0- 

COSttj, cbSySj, C0S7j 

cosag, cosySg, cos 73 

If d be the shortest distance between the two straight lines, 

and 6 the angle between them, it follows that 

Px-P2^ ̂ q^-q^ } ^2 

COS a^, cos ySj, » cos 7j 

cos ag, COS^g , cos7g 

Pv qv P2^ ^2 

cos a^, cos cos 7j 1 COS ttg, cos ySg, cos 72 

cos ffg, cos ^g. cos7g cos ttj, cos cos 7i 

= “2/1+K9i + f/i + “./j+ 
S.D. 13 
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If the expression on the right vanishes, then either c? = 0, 

i.e. the two straight lines intersect, or sin^ = 0 when they are 

parallel, and hence also meet. It is convenient to have a name 

for the expression on the right. If a unit force acted in one of the 

lines its moment about the other would be dsin 6, i.e. in terms of 

the co-ordinates of the lines 

“i/i+h92+cA + “j/i+ 
Hence we shall call this the moment of the two straight lines. 

If two straight lines meet their moment vanishes. 

17. Let us take two systems of straight lines whose co¬ 

ordinates are 

9if fii 9iy • 
Then if denotes the moment of the line r of the first and 

s of the second system, by compounding the two arrays we get 

the determinant 

I I • 
Hence for two sets of seven straight lines 

' ?n„ ... m., 1 = 0, 

m„l 

an identical relation between the mutual moments of two sets of 

seven straight lines. If the two systems coincide 

0, 

m,,, 0 ... 

I ^72 .. 0 

For two sets of six straight lines 

m. = I a,. K c„ g., h, I 

(z = l, 2...6). 

If one of the sets of six straight lines—say the first—is met by 

a common transversal whose co-ordinates are a, 6, c, /, h, we 

have for each of the straight lines of that system 

«/■ + ^91 + +/a, + gh,+ hc, = Q. 
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Thus the first of the determinants on the right vanishes, and 

^61 ••• Wee I 

is the relation between the mutual moments of the two sets 

of six straight lines, one set of which is met by a common trans¬ 

versal. 

If the two sets coincide we get the identity for a system of six 

lines met by a common transversal. 

18. If the moments of a system of forces about one set of 

seven lines be wZj, m^... m^, and about a second set n^, n^... n^y we 

can establish an identity among the moments involved. 

For if any force P of the system act in a line whose co-ordinates 

are a, 6, c,/, h, we have 

— 2P [afy^ + hg^ + c\ + fa^ + gh^ + hc^ 

- f^'lPa + g^'lPh + \tPc + a,2P/+ h.tPg + c^'^PJi, 

and six other equations for ... Hence eliminating 

we get 

XPa, tPh....^Phy 

Vlij Ctj, hyy Clyflygxy ^ 

^7> ®7) ^7» 5^7’ ^7 

and a similar equation for the other system. Hence each of the 

determinants 

0, Wj, Cl, /i, g^y K 

0, G^y Cj, j g,j} ^7 

1, 0, 0, 0, 0, 0, 0, 0 

fu 9i y 

^^7> /t > Oiy ®7 ’ ^7 ^7 

0, 1, 0, 0, 0, 0, 0, 0 

vanishes. Forming their product we get 

|w,i ... m^,y 71, 1 = 0. 

... m„, n, | 

7)\ ... m^y 0 I 

13—2 
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Tetrahedra and Triangles, 

19. Let there be two systems of points in space whose co¬ 

ordinates referred to rectangular axes are {x^, y., z^, (f., 77., ^.). Let 

us compound the two arrays 

Vk ^1. 1. 0 - - 27)j, - 2^,, 0, 1 

x„y„z„l,0 _2f,,-2,„-2r„0, 1 
0, 0, 0, 0, 1 0, 0, 0, 1, 0, 

we obtain the determinant 

c„ ... c„, 1 

Cjj ... Cy, 1 

1 ... 1 

where c„-- 2^,1?. - . 

To the r“* row add the last multiplied by + y' + z^, and to 

the .column add the last multiplied by + 77/ + f/, the deter¬ 

minant is unaltered and its elements are now 

dr. = ^r + Vr + ?r “ “ 2z,?. + f/ + 7)^ + 

i.e. d^^ is .the square of the distance between the point of the 

first and s*** point of the second system. We have then the deter¬ 

minant 

dn - d,„ 1 

... d^, 1 

.1 ... 1 

. If z = 5 the determinant vanishes, hence 

dn ••• 1 = 0, (i) 

d^i • • • ^65» ^ 

1 ... 1 

is the identical relation which subsists between the lines joining 

two sets of five points in space. If the two systems coincide 

d.. = 0, and the determinant, which is then symmetrical, gives the 

relation between the lines joining five points in space. The 

relation in this form is due to Cayley. 
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If i = 4, 

••• 1 ^1. Vv 1. 0 -2f„ _2y„ -2f., 0, 1 

- du, 1 *4> 2/4. ^4. 1> 0 -2f., -2y., -2r., 0, 1 

1 ... 1,0 0, 0, 0, 0, 1 0
 

0
 

0
 

0
 

= 288FF'..(ii), 

where F, V' are the volumes of the tetrahedra formed by the two 

sets of four points. 

If the two sets coincide in a single tetrahedron, for which 

a, a'; 6, 6'; c, c are pairs of opposite edges, 

288 F* = 0 , o'", 6"', a'*, 1 

c^, 0, h\ 1 

6'^, c% 0, a\ 1 

h\ a\ 0,1 

1, 1, 1, 1, 01 
If i = 3, we have 

=-4|a;,2/,l| I,,?,!], 

^ss> ^ 

1 ... 1, 0 

all the other determinants on the right vanish identically. 

Now if A, A' he the areas of the triangles formed by the two 

sets of three points, I, m, n; X, fi, v the direction cosines of the 

normals to their planes 

I a?, y, 11 = 2 projection of A on plane xy = 2A7i, 

and similarly for the others; hence if (j) is the angle between the 

planes of the triangles 

d. = — 16 A A' cos (j) (hi). 

W'ai ••• 

1 ... 1, 0 

Lastly, if i = 2, 

= 1, 0 - 0, 1 

^21» ^ a;,, 1, 0 -2?3. 0, 1 

1,1,0 0, 0, 1 0 , 1, 0 

= 2 - »,) (f, - fj) + 2 (y, - y,) (y, - y,) + 2 (2, - (?, - Q, 
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the other terms vanish. Now if a, b be the lengths of the lines 

joining the points of the first and second systems and 0 the angle 

between them, 

Hence 

+ + . = cos 0, 

1 = 2a6 cos 9 

^21’ ^22’ ^ 

1,1,0 

(iv). 

20. If in case (iii) of Art. 19 we allow the two sets of three 

points to coincide with the vertices of a single triangle whose 

sides are a, b,c, 

~16A’*= 0, c% b\ 1 

c^ 0, a", 1 

b\ a\ 0, 1 

1, 1, 1, 0 

Multiply each column by abc, then 

-16A*aW= 0,abc\ab\abc 

abc*, 0 , a^bc, abc 

ab^c, a^bc, 0 , abc 

abc , abc , abc , 0 

Divide the first,, second, and third rows and columns by 

be, ca, ab respectively, then 

- 16A* = 0, c, h, a 

c, 0, a, b 

b, a, 0, c 

a, b, c, 0 

= a, b, c, 0 

b, a, 0, c 

c, 0, a, b 

0, c, h, a 

by an interchange of columns. 

If in the first expression for — IGA’* we divide the second and 
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third columns by d^, and then multiply the first and last rows by 
a’, we get: 

-16A’* = 0, c^ a* 

0, 1, 1 

h\ 1, 0, 1 

a^ 1, 1, 0 

21. If in case (ii) of Art. 19 one of the sets of four points— 

say the first—lies in a plane, F= 0, and 

■du ••• 1 = 0. 

1 
1 

If one of the sets in case (iii) lies in a straight line the cor¬ 

responding triangle vanishes; hence 

^11 ^13’ ^ = 0. 

^31 ••• ^33’ ^ 

1 ... 1 

By allowing the second system to coincide with the first we 

get the identical relations between the lines joining four coplanar 

and three collinear points. 

22. In the identical relation 

d. = 0 

I 1 ... 1 I 

between the squares of the lines joining two sets of five* points, 

let the fifth point of the first system be the centre of the sphere 

circumscribing the tetrahedron formed by the first four points of 

the second system, and the point 5 of the second system the centre 

of the sphere circumscribing the first four points of the first 

system. Then 

^16 = d^ = ^35 = ^46 = 
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Also, if (f) be the angle at which the two circumscribing spheres 

intersect, d^ = R^ + R'^ + 2RR cos . 

Hence with an interchange of rows and columns 

I d,, ... 1, i2M = 0. 

d„ ... d„, 1, E‘ 

1 ... 1 , 0, 1 

R- ... 1, 4 
Multiply the fifth ‘column by R^ and subtract it from the last, 

and the fifth row by R'^ and subtract it from the last, then 

\d.cZ.., 1, 0 1 = 0. ... W/,^, X, \J 

d,. ** ^44> 0 

1 .. 1, 0, 1 

0 .. 0, 1, 2RR! coscf) 

Or, resolving according to the elements of the last row and column, 

we have by Art. 19 (ii) 

576FiZ F'iZ'cos 0 = \ d^^ ... d^^\ 

\d,,...dj 
AFe .see from this that so long as the circumscribing spheres 

remain fixed the tetrahedra can turn about in them without 

altering the value of the determinant on the right. The determi¬ 

nant vanishes if the circumscribing spheres of the two systems 

cut orthogonally. This relation is due to Siebeck. 

23. If in Art. 22 we allow the two tetrahedra to coincide we 

get, since ^ = tt, 

16(6FR)’* = - 0,a'\h'\c^ 

d^, 0, dy ¥ 

V\ c^ 0, d 
c\h\ a\ 0 

Multiply the second, third and fourth rows and columns by 

a*, Idy & respectively, then . ‘ 

16 (6 VRf dhV = - 0, (aa'f, (bhy, {cc'f 

{aa'fy 0, aW 

{hh')\ aVc\ 0, aW ‘ 

(cc')*, 0 
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Divide the second, third and fourth rows by (obey, then multiply 

the first column by the same quantity, 

16{6VRy=- 0, {aa'Y, (hh'y, (ccy 

{aa'y, 0, 1, 1 

{hh')\ 1, 0, 1 * 
{ccy, 1, 1, 0 . 

Now if we write 

aa = kx, hV = ky, cc = kz, 

then if A is the area of the triangle, whose sides are x, y, z, we 

have by Art. 20, 
{(oVRy=¥^\ 

QVR = k^^. 

This triangle, whose sides are proportional to the square roots 

of the products of pairs of opposite sides of the tetrahedron, has 

many interesting relations to the tetrahedron. It is sometimes 

called the conjugate triangle. 

Formulce relating to the Ellipsoid. 

24. If {x^, y^, and (f^, 77., Q be two sets of points on the 

ellipsoid, 

Then, if denote the square of the distance between the 

and 5*^ points of the two systems and the square of the parallel 

semidiameter, we have 

- ^-2 

Hence, if we compound the two arrays. 

x^ 3/t 5 1 ■ -Ml. • 2^. -Ml 
a’ 6 ' c* a ’ b ’ C 

5 Vi 5 1 -Ml -M 
a ’ b ’ c’ ^ a ’ ■ h ’ C 
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For two sets of four points forming two tetrahedrg, of volumes 

V V' 
576 vr 

aW 

Similar formulae can be established for an ellipse in a plane. 

If the ellipsoid become a sphere a = b = c= By and since all 

diameters are equal, we can replace by Thus 

d.d 

••• ^65 

= 0 

is an identical relation between two. sets of five points on a sphere. 

This relation is due to Cayley. 

The second relation in this case reduces to the result of 

Art. 22, when the two tetrahedra have the same circumscribing 

sphere. 

25. If the points y^, 77^, are not situated on the 

ellipsoid, then since 

+ 6“ + 

=^A _ . c. 
a" V e a" V c* 6“ c’ ’ 

if we compound the two arrays whose rows are 

5 h h ^ 
a* ’ a ’ 6 ’ c ’ ’ 

^ 

' a \ b ’ c ' ’ d ’ 

we get the identical relations (iv. 2) 

= 0 «u--* «X6 

«66 

«u-** «X5 

«55 
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“ 1 ’ a ’ 6 ’ c ’ 

^ -2r, ?* V. r; 
a ' b ' c 

(^ = l,2 ... 5), 

for two systems of six points and five points respectively. 

If in the latter equation all the points'of the first system lie 

on the ellipsoid, 

we should have 

a? f if 2px 2gy 2rz p^ <f r» ■ 
of 6“ 

satisfied for each point of the system. Hence we see by eliminat- 

iiig 
-2g -2r / , 

a ’ a ' a ' 

between these five equations, that the first determinant on the 

right vanishes. Hence 

= 0, 

if the five points of one of the systems lie on an ellipsoid similar and 

similarly situated to the given one. If the ellipsoid reduce to a 

sphere, we get 

= 0, 
- ^16 

an identical and homogeneous relation between the lines joining 

two sets of six points. 

And = 0 

for five- points situated on a sphere. * 
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26. In like manner, if for the same systems of points as in the 

last article we compound the arrays 

a ’ 6 ’ 
5 fx 1 0 
a ’ 6 ’ c ’ ’ 

,0,1 

-‘10 
’ 5 ’ c ’ ’ 

Vi 
a 

0, 0, 0, 0, 1, 
we get the determinant 

?£■ 
a ’ 

0, 
b ’ 

.0. 

0 1 
c ’ ’ 

0, 1,0 

C.x ... C«, 1 

1 ... 1 

where ^ HI ^I/rVs . 
a' W c‘ 

Multiply the last column by 

f" V k*- _1_ JjL. _1_ ^ 
^2 “ ^ 

and add it to the column, and the last row by 

and add it to the r"" row, then the element at the intersection of 

the row and column is 

And hence, (iv. 2), 

a„...a„, 1 1 = 0 

%•••«„, 1 
1 ... 1 

is an identical relation between any two sets of five points in space. 

If the ellipsoid becomes a sphere we regain Cayley’s relation (Art. 

19, i). . . 

For ^ = 4. we have 

288 VV 

aW 
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F, V' being the volumes of the tetrahedra formed by each set of 

four points. 

27. The polar plane of a point z^) with 

the ellipsoid, is. 

(P P 
= 1. 

respect to 

The distance of a point ^ from this plane is 

f 

If (Q, P) and q denote like quantities for the point Q, 

1 y,'n. zX. 
p q d? 'V ■ 

This function has been called by Faure the index of the two 

points P and Q, denote it by Then, by compounding the arrays 

whose rows are 

5 2f< £< 1. -V, -t. -I 

a ’ 6 ’ c ’ ’ a ’ b ' c ' ’ 

we. obtain 
= 0 

36 FF' 

■ 

28. It may be remarked that these space relations connected 

with an ellipsoid are not really more general than those connected 

with a sphere. For they are what the relations in an ordinary 

space become when the sphere » 

becomes changed by a homogeneous pure strain to the ellipsoid 

a;* v’^ . 
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Formuloe relating to Systems of Spheres. 

29. If r, s be the radii of two spheres, the angle at which 

they intersect, and d the distance between their centres, then 

<F = 7^ +s^ + 2rs cos (/>. 

The function 
2rs cos (j) = (F — 7^ ^ 

is of importance in the study of the mutual relalions of spheres; 

it is called the power of the two spheres. We shall denote it 

^yPr.- 
If one of the spheres, say s, becomes a point, the limit of 

2r5 cos (j) is r*, i. e. the square of the tangent from the point to 

the sphere, or what is known as the power of the sphere at the 

point, or the power of the point with respect to the sphere. 

If both spheres reduce to points the limit of 2rs cos (f) is (F, the 

square of the distance between the points. 

If one of the spheres becomes a plane, and p is its distance 

from the centre of the other, 

cos 6 = -. 

If the second sphere become a point, and p is its distance from 

the plane, the limit of r cos (ft is p. 

30. Let y., z) and be the co-ordinates of the 

centres of two spheres of radii r^ and then if p.j^ is their mutual 

power. 

p^ = d^-r^-p,‘ 

= + yf + ^' - r' - ^oc-S^ - + r,^ + -p^. 

Hence, compounding the two arrays 

Viy < + Vi + < - r^ 

and 
3/p \y + y^ 4- 

- 2f„ - - 2r,, -H v: + 1 

we see by iv. 2 that for two systems of six spheres 

= 0 
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If COS is the cosine of the angle at which two spheres cut, we 

can also write this 

I cos 1 = 0 (i, k = 1, 2 ... 6). 

For two systems, each of five spheres, 

PbI--Ps6 

(ii) 

= \a:,y,z,l,x^ + y^ + ^-r^\x\-2^,-27j,-2^, + + 1 |. 

If the five spheres of one of the systems—say the first—have a 

common radical centre, taking this for origin we should have 

+ + —r^ = 

where c is the same for all the five spheres. Hence, in the first 

determinant on the right of (ii), the fourth and fifth columns are 

proportionals and the determinant vanishes. 

Thus 

Pn-^PiB = 0 

Pb1--Ps5 

(iii) 

when the five spheres of one system have a common radical 

centre. 

If the five spheres of the first system reduce to points (iii) is 

the condition that they should lie on a sphere. 

If both systems reduce to points we regain Cayley’s condition, 

that the five points of one system should lie on the same sphere. 

31. But if neither of the determinants on the right of (ii) 

Vanish, expand the first determinant with regard to the elements 

of the last column. 

Then = 

is the power of the origin (i.e. any point) with regard to the 

sphere of the first system. Then if we write 1, 2, 3, 4,-5 for the 

centres of the five spheres, and denote by 

= (2345), = (3451), &c.', 

the volumes of the tetrahedra formed by the points in brackets, 

and if accents denote similar quantities for the second determinant, 

we have in place of (ii) 

2<S8 + J'jPs + • • • + fjPJ (t’/p,' + ... + w/p,') 
= 5). 
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Now describe about the origin a sphere of radius r, cutting the 

spheres at angles (/)j ... . 

We have, since (Art. 5) 

+ ^2 + • • • + Vg = 0 identically, 

+ • • • + '«bPs = '^1 (;>!-»•“)+•••+ (Pl - O 
= 2r cos (/)^+ ... + cos (/)J, 

and p being a similar sphere for the second system, 

I I •— 288pr%2v.r^cos ^.S2v'p^cos <j>' ■ 5). 

Thus rX2Vir, cos is independent of the particular sphere r, 

let this be the orthotomic sphere of the first four, then this sum 

reduces to 
2t),r,Ecos 

and the second factor, in like manner, becomes 

Hence 

i ^>ll • • • I = 1cos (r^R) cos {p^R'}. 

f jPgj . . . jPgg 1 

32. For the fifth sphere,of each system in this last equation take 

the orthotomic sphere of the first four spheres in the other system. 

Then in the determinant on the left all the elements in the last 

row and column vanish except p^, and 

jPgg = 2RR' cos (RK). 

Hence we obtain 

I JPn • • • Pu 1 (RR') = Uo2v^v;R^R'^ cos^ {RR'), 

IJP41---JP44I 

or dividing out the common factors and writing V, V' for v^, v^\we 

get .for two sets of four spheres 

bii • • • Pi41 = 576 VV'RR' cos (RR'). 

[P41‘-Pul 

If the spheres reduce to points we regain Siebeck’s formula 

(Art. 22). 

The determinant on the left vanishes if the orthotomic spheres 

of the two systems of spheres cut orthogonally. 
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33. To determine the meaning of the determinant 

(i, A: = 1,2, 3). 

In the determinant of Art. 32, let the fourth sphere of each system 

be the plane determined by the centres of the first three spheres 

of the other system, then if A, A' be the areas of the triangles 

formed by the centres, ^ the angle between their planes, 

V' . F 
lim. —r = 3A cos <f), lim. — = 3A' cos <f). 

^4 

Also if the radical axis of the spheres of the first system meet 

the plane of centres of the second system in P, whose power 

with reference to the spheres is jp, and P', p denote like quantities 

for the other system, 

2RR'cos {RR') = PP'^-p-p'. 

Hence 

Pii • • • JPis I = 16AA'cos<j> {PF'‘-p-p'). 

Vsi • • • jPsa I 

34. If in the relations 

^11 ••• 1 

^51 ' ' • ^65 > ^ 

1 ... I 

4-^14^ I =-288FF', 

^41 ••• ^44» 1 

1 ... 1 

of Art. 19, we suppose the sets of points to be the centres of our 

spheres. 

Then if we multiply the last column by and subtract it 

from the column, and the last row by and subtract it from 

,the row, we get the relations 

Pn —P^’ 1 1=0. 
••• 1 

1 ... 1 

S. D. 14 
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Pn 1 = -288Fr, 

Pax --Paax 1 
1 ... 1 

which give relations between the mutual powers of two sets of five 

and four spheres. 

35. Another element connected with two spheres is the length 

of their common tangent. For two spheres of radii r, s the dis¬ 

tance between whose centres is d and which cut at an angle 

the square of the length of the common tangent is given by 

= 2rs cos® ^(j). 

If one sphere reduce to a point, t is the power of that point 

with respect to the other sphere. If both spheres redufce to points, 

t is the square of the distance between them. 

36. Using the same notation as in Art. 30, if is the square 

of the tangent common to the two spheres 

4 = - fJ’+(y. - yj’ + - (n - PaY 

= <+ y' + < - »■(’- ^PxVa- 2a,?. + 2r^, + f,* + vY+ p,’. 
Hence, compounding the two arrays 

Vxx «i. n. 1. ‘*^1*+Vx + - '^x 

Vx, a„ n- 1. + Vx + a,’ - 

0, 0, 0, 0, 0, 1 

-2f.. -2,,., -2?,, 2p,. + + 1 

- 2?„ - 2,„ - 2?,. 2p„ + r,^ + ?• - p,’, 1 

0, 0, 0, 0, 1, 0, 
we get for two systems of six spheres the identity 

txx- 

t t *'61 • 

1 . .. 1 
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For two systems of five spheres we should get 

1 =576 («,r, +... + (v,'p, + ... + vjp,), 

<«•••<„. 1 
1 ... 1 

using the notation of Art. 31. 

If 4 is the angle at which the plane of similitude of the first 

four spheres of the first system cuts each of these spheres, and 

(r^t^ the angle at which it cuts the fifth sphere, and similarly for 

the second system, we can reduce this to the form 

1... 1 

cos (r,%) 

COS 4 , 

cos (p.T,)\ 

cos Tg / * 

Hence the determinant vanishes if one of the systems of five 

spheres has a common plane of similitude. 

For two sets of four spheres, after some reduction we can 

prove that 

where (j> is the angle between the planes of similitude of the two 

systems, and t, r the angles at which they cut their sets of 

spheres. 

37. By compounding the arrays whose rows are 

Vo + 2/* + 2?“ - r * 

and - ., - 27/., - 2^., 2p., + 77* + 1, 

we get the homogeneous relation between the sets of tangents 

common to two sets of seven spheres 

14-2 
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38. We may make use of this last relation to solve the 

problem: Determine the equation of the sphere having with five 

given spheres tangents of the same length. 

Let the equations of the five given spheres be 

-Sf. = 0.s.=o. 
Take these for the first five of each set of spheres in Art. 38, 

let the sixth sphere be the one required, and the seventh a point on 

the sixth. 

Then we shall have 

and the equation is 

= 0. =h, 

0, ^12 > «... <18. 1, 
0, ^28* ^24 > <28. 1. «2 

^621 0, 1, 
1, 1, 1, 1, 1. 0. 0 

S.. S,. ,0, 0 

This is apparently of the fourth order, but by means of the sixth 

rows and columns we can get rid of the terms of the second degree 

in the seventh row and column. 

39. All the equations of this section relating to spheres are 

capable of numerous and varied applications, some of these will 

be found in the examples, and others in the memoirs of Bauer, 

Darboux and Frobenius. 



EXAMPLES. 

Prove the following relations : 1—5. 

1. a6 , ae = 2a6c (a + 6 + c)’, * 

ab , (c+ay, be • 

ac , be , (a + by 

(6+cr, , 6* = 2 (6c + ca + a6)®. 

c’ . {c + aY, a* 

, , (a + by 

2. 1 , 1 , 1 = 0, 
tan A, tan By tan C 
sin 2^, sin 2By sin 2(7 

a Aj Bj C are the angles of a triangle. 

3. 1, X, (a + x) J{c + x) =0, 

1, t/> (» + y)V(c+y) 
1, z, (a + k) ^{c + z) 

yo+y(^)+y(^3= 
4. 

1 , cos a , COs(a+/3), COs(a+j8+y), cos(a+/3+y+S) I =0 
COS a , 1 , cosjS , cos(/3 + y), cos(/3+y+S) 

cos (a + , cos /3 , 1 , cos y , cos (y + 8) 

cos (a + /3 + y) , cos (/3 + y) , cos y , 1 , cos 8 

COs(a+j8+y+8), cos(/3+y+8), cos(y+8), cosS , 1 

6. QJ + 5 + C + C?, a — + a-b + c-d 

a-b-c+dj a + b + c + dj a + b -c-d 

a-b + c-dj a +b’- c — dj a+b + c + d 

= 16 (bed + acd + abd + abc). 
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6. 
then 

If a, 6, c are the sides of a triangle of area A, 2s = a + 6 + c, 

= -16sA (aVj + 6V,+ cV^,), (6+c)*, ah , 

ah , (c+a)*, 

ac f be j 

a ^ h , 

ac , 

be , 

{a+by, 
c 

r^f 7*3 being the radii of the escribed circles. 

If the elements in the principal diagonal are (6-c)*, &c., the other 

elements being as before, the value of the determinant is 

_ A’/ 
- + — + 

s ' V 
{b+cy, ah , ac , a = -16sA (ar^ + br^+ cr^, 

ah , {e + ay, be , b 
ac , be , {a + by, c 

1 , 1 , 1 

(6 + c)>. ah , ac , 1 = 16A*—20a5cs. 
ah , (c + a)*, be , 1 
ac , be , (a + by, 1 

1 , 1 , 1 

7. If aS^= a, + a, + ... + .4^ = /S'- prove the following theorems : 

x-A^, ... a n ^ = x(x-S)’-', 

X —A^ ... a^ 

... x-A^ 

x-a^ , ... = {x + {n-2)S]{x-Sy 

X- a^ ... .4, 

A . A ... x — a^ 

8. The determinant 

a, i. h, b 

a, b, a, a 

b. a, b 

a, a, a, b 

(the diagonal consisting of a and b alternately and each row being filled 

up with the other letter) is equal to 

The determinant is supposed to have 2ii rows. 
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9. If in a determinant all the minora of the second order are 

divisible by the same quantity then the minors of the order are 

divisible byy)”*"*. 

10. If in a determinant of the order there be a block of jt? by 7 

elements all of which are divisible by a, the determinant is divisible 

by 

11. Prove the theorems : 

tty a+hy a+26+c, a+ 36+3c+c? 

a, 2a+hy 4a+46+c, 8a+126+6c+c? 

ct/y 3ci+6, 9ct + 66+Cj 27®+2 76+9c+c? 

ay i, d, ... 

ay a + by a+ b +c. ft + 6 + c + c?, ... 
ay 2a + by 3a + 26 + c. 4ft + 36 + 2c + c?, ... 

a. 3a + by Qa + 36 + Cy 10ft + 66 + 3c + ... 

d ... | = o"r-'. 2”-*.3’- 

where a, 6, c, d ... are any quantities whatever, and n is the order of 

the determinant. In the first determinant each row after the first is 

obtained from the preceding by the rule that the element of any 

row is the sum of the first r elements of the preceding row. In the 

second determinant the element of any row is the sum of the first r 

elements of the preceding row multiplied respectively by the coefficients 

in the expansion of (1+ «)’'“*. 

12. If D = ft. b, d ... 

-ft. h, q ... 

-ft. -h, r ... 

-ft. -6, d ... 

{n rows), 

then D = T ^ahcd... 

The elements of the first row and leading diagonal are a, 6, c, c?...; 

in each column the elements below the leading diagonal are equal to the 

element in the first row but of opposite sign, the others are any what¬ 

ever. 

1 cos cos (w-1) ... cos 

coswa 

cos na 

j, cos(w-l)aj 

,, cos(7t-l)a„ 

cos a, 1 

cos a,. 

13. If = 
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A= 

D,= 

COS’*a^, cos’* ‘ttj, ... cosa^j, 1 

COS’‘aj, cos"“*aj ... COSttj, 1 

cos"a^, cos’‘“*a^ ... cosa^, 1 

sin (71 + 1) ttj,, sin noj,... sin ttj, 

sin(7i + l)aj, sin Wttj ... sinttj 

sin (n + l)a„, sin na^ ... sin 

then 

7) "(w-i) 
-^-=2 • , 

7) n(n+l) 

■^2 _ O 2 

A" 

14. If b^^ = (a„ + a.^ + ... + - a**? l^en 

But if 

6„. . K =(-l)-(«-l) •• »ln 

i,.- -K. «»1 • 

6„ = (a„ + a„ + ... +aj)-2a^ 

■K 
= „(-2)-‘ »n ••• «i» 

®nl ••• ^nn 

15. Prove that every power of a symmetrical determinant is again 

a symmetrical determinant. 

16. If for each element a.^ of a determinant A we write in turn 

ajj + c, we get new determinants. If these be taken as the elements 

of another determinant its value will be 

(Ac'r'{c + S), 

where S is the sum of all the elements of A. 

17. If u = (X, - a,6.) (X, - aA) • • • " «A), 

prove that the value of the determinant 

a.6„ aj> ... a A 

••• 

afi^, ^2^3 > -^a ... aj)3 

a .6. aj)^ 
u|i 

' ■■■ 
IS 
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and the value of 

0, a,, a, ... a„ 

K -T,, ... aj)^ 

Ky 

18. If u = (x-2a^) (x—2a^) ... (a; - 2aJ, prove the following 

theorems: 

3 

2 y (x - ay, a, 

< y{^~%Yy 

= af ^u{x+'% —-Jt"! 
( x~2aj 

< > < y(^-%y-- 

0, 1,1, 1 

1, (x-ay, a/ , < 

1, a," , (x-ay, < 

{x-ay, , a,<*3 ... 

, («-«/, V3 ••• 

«i«3 » V3 » («-«3)*-” 

a;"' 
c?x 

*■ 0, 
«1 » «3 > «3 • 

V2 > «1«3 • 

®1®2 > «2»3 • 

«3. «,«3 » «,«3 , (a-o/. 

a; —2a, 

And if 

/> = (*-«,)’. < ••• 

< . {x-a,y... 

»: , b„ 1 

, K, 1 

Ctj* , ttj* ••• 1 

i, , \ ••■ b, , 

1 . 1 ... 1 
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j)_ ^ ( 1 1 r bj ) 
a5”“*w \x — 2a^^'"^x — 2aj \x-2a^^ x — 2aj 

[ex. 

-{ x—2a. 
+ ...+ 

-2aJ 

19. Prove that, if S = x + y + z +Uy 

(S-uf, x' , f , 

«’ . (S-xf, y‘ , 

. (S-yY, z’ 

o« fl 1 1 1 4\ 
= 2S xyzu -{-H-1-1- 

{x y z u S) 

0, 1 , 1 , 1, . 1 = >S® {a;*(y + 2 + w) + y* (a + 2 + w) 

1, {S-u)\ , y . + (aj + y + w) + w® (as + « + y) 

1, u‘ , (s-xy, 2^ . + 2xyz + 2a3;2;w + 2yzu + 2dcyu 

1, w* , {S-yY, 1 1 1 1 1 ^0
, 

1, w* , , tY , 

20. If Jr=cn£cdna;, <fec. prove that 

snaj, sn'aj, X 

sny, snV, Y 

snzj sn% Z 

= sn (y - z) sn (z - x) sn {x - y) sn (a; + y + ;2;)i/, 

where 

-1/’= 1 - ^ {sn“y sn®« + sn*« sn®a; + sn’a; sn“y} 

+ A;*(1 sn’ic sn®y sn^z — A;®sn aj sny sn «(YZ sn £c + ZX sn y + XYsn z). 

21. If sn a; cn £c dn £c = X, &c. prove that 

1, sn®a;, sn^as, X | = 0, 

1, sn“y, sn"y, Y 

1, sn*«, sn^;?;, Z 

1, sn“w, sn^w, U 

x + y + z-k-u- 2pK + 2qiK', 
provided 

ja, q being integers. 

22. If 

then 
+ ^<+v+* ^<+v ®<y+ > 

.S', -S'.. ... 

*^31 » ^33 ••• ^ik-k 

^k-k\i ^k-k2"’ ^k-kk-k 
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* the sum of all the minors of order h’-h of the determinant 

= I I; excepting always in such sum those determinants and their 

complements of order h which in their formation have two row or 

column suffixes congruent with regard to the modulus h. 

23. If 

D = 0, 1, 1, 1, 1 ... 

1, 0, a. 0, 0 ... 

1, y, 0, X, 0 ... 

1, 0, 2/» 0, X ... 

1. 0, 0, 0 ... 

{n rows), 

where all elements are zeros, with the exception of the border, and two 

lines of elements one on each side of the principal diagonal, prove that 

a + y 

aj + y aj + y 

and hence that 

1 33 + 2/ ) * 

^H+1 _ (2n + l)(x + y)(-xyy 

(x + yY 

24. If 

D = H c, a, Cj Cj c ... 

6, c, a, c, c ... 

c, &, c, a, c .. 

c, c, 6, c, a .. 

c, c, c, 6, c .. 

(ti rows), 

where all the elements are c with the exception of two lines, one on 

either side of the principal diagonal, prove that 

B 2h-1 
c 

((a-cY-(c-b)X 
\ a + b-2c j 

Find also the value of 
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25. If 

0, 1, 1, 1. 1 ... 

1. a, 0, 0 ... 

1. h, Cy a. 0 ... 

1, 0. a ... 

1, 0. 0, by c ... 

(n rows), 

(where, with the exception of the border, the elements in the leading 

diagonal are c, in the lines on either side of it a and b, the rest are zero), 

then 

■0. - "' "* a+b+c 

2ab 

a + b + c ’ u — v 

^ a + b+c * u-v ’ 

where u and v are the roots of the equation 

z* -cz + ab = 0. 

Hence shew that 

w" + v" nc (w" + v") 

{a + b + cY {a + b + c){u- v)* 

2abn w"“ * + v"“ * (- a)" + (- by 

a + b + c' {u — vY {a + b + cY 

26. The value of the determinant 

w, . .. u 
n 

y .. u 
#1* 

u 
#1- • .. u 

»• 

y W3 .. .. w, 

1 

m—% 

(i) If u^-a + ir-\)b is 

(ii) If is (l-a;")"-\ 

(iii) If is 

(-1)- 
.j {n + V){2n+ 1): 

12 
{{n + 2)"-n"}. 
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- (iv) If it^ = cos{a + (r—1)6} is 

[cos a - cos (a + n6)]” - [cos (a - 6) - cos {a + (w — 1) 6}]“ 
2 (1 — cosw6) * 

(v) If = sin {a + (r — 1) 6} we must change the cosines in the 

numerator of (iv) into sines. 

(vi) If = a’'-' + + a’"'’*"-' + ... ad inf., is 

(l-a;")-\ 

27. The solution of the partial differential equation 

w = 0. A. ... B 
n 

A. ■0. ...B n* 

A. A ... D, 

where. A = 
d 

dx^ 

is ®3- 

the functions being arbitrary and the summation extending to all 

values of w being roots of the equation £c" — 1 = 0. 

28. If in an orthosymmetrical determinant of order n (vi. 20), 

(l_ga)(l_^a+l) ...(l_ga+A:-2) 

... (l-jy+i-S)’ 

the value of the determinant is equal to 

/I /I _^a+l\W-2 /I _g,a+n-2\ 

\1 -gY/ \1 - V ”* \l-^y+»-2y 

multiplied by a fraction whose numerator is 
n(n-^l) n(n-l)(n-2) 

(-1) ^ q/ * 

X (^Y+l-g“)«-2 ... (50f+»-2-g«), 

and denominator 

(1- ^y)(1-^y+i)2 ... (l-^+«-2)«-i 

X (1 -^y+»-i)«-i (I _^y+«)«-2 ... (l-5y+2n-8^^ 

29. The value of the determinant 

i) = 0 

Ctj + (Zj j 

+ cr-a, «i + ®3 ••• 
0 , aa + «3 ... 

(n rows), 
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the elements in the leading diagonal being zero, that in the row and 

column a^ + aJy is given by 

where i, k are all duads from 1, 2 ... w. 

30. The value of the cubic determinant of order ti, such that 

is given by 

And if 

^isic = «, + = 0, 

o a,CTj ... a a^aJ^ 

= cos (a. + ttf + a*), CTjjj = 0, 

i) 

cos 3a, cos 3^3... cos 3a 
= 71-1 + 22 

cos {a^ + a,) sin* (a^ — a*) 

cos 3a, cos 3a* 

where i, h are all duads from 1, 2 ... ti. 

31. If .4 = I a,* |, A = [5^,1 are two determinants of ordei-s n and m 

respectively, we can form a new square array of (nm)* elements as 

follows. Repeat the array 5,*, n times in a row, and take n such rows, 

so that B is repeated like the squares on a chess-board. Then multiply 

each of the elements of that block which stands in the row and 

column by a,*. The determinant of the resulting array is equal 

to A^B\ 

Example: 

Cy d ^ y, 8 ’ 

aa, aPy 5a, hp = A^B^. 

ay, a8, 5y, 58 

ca, cPy day dP 

cy, c8, dyy c?8 

32. If a, 5 ... Z; a, ... X are any two sets of n quantities, and 

^ik = (®i “ + (pi - PkY + ... + (^< - KYy 

prove that 

I dyy ... dy, 1 = 0, if s = 7i(r-l)+3. 

d. .. d„ 
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d,, ... dui 1 =0, if « = n (r-l) + 2. 

d„... d., 1 

1 ... 1 

33. |ln this and the next five questions 

m (m- l)(m—2)... (m- 

1.2.3...* 

*+in 

The determinant 

(m+l), , (to +1),^, (to + 1). 

(m + r-l)p , (TO + r-1),^, . (m + r- 1)^ 

(m + r-), , (TO + r)„, (TO + r). 

(m + r + 5)p , (TO + r + s),^, . (m + r + 5)„ 

(m + r + s+ l)p. (TO+r+» + l),^„ . (m + r + s+l)„ 

(m + r + « + <)p. (m + r + 5+^)p^j .. . (m + r + 5 + <)^ 

where u=p + r + t+\ (the suffixes jo, p ■¥ \ ... u oi the rows are con¬ 

secutive, but m, w + l...«i + r, m+ r + 5 ... m + r + 5 + ^ form two 

groups of consecutive numbers), is equal to the product of the two 

fmctions 
(m + 1)^ ... (m + r)^ (m + r + 5)^ ... (m + r + s + <), 

(»• + «+ l)r.. ••• + 

(’■+1),+ ! (’■+ ■■■ (’■+* + l)r+l 

34. The determinant 

(to+1)„ (ot + 1),., .. • • (to+ 1),.,.... 

(m + 2)^, (m+2)^^.i.. • («» + 2),.., (to+ 2),.,.,.. • (to+ 2),.,..., 

(TO + r),, (TO + r),.,.. 

where r = 5 + w +1 (the suffixes jo, jo + l ...jo + s, p + 8^v...p-\-8 + v-k-%i 

form two groups of consecutive numbers, while m, m + \ ...m+ r are 

consecutive), is equal to the product of the two fractions 

_{m + l)y ... {m-¥r\_ 

pAp + '^X--- (?+»).(?+»+”), - (p+s+«+«), 
(m - (m — p + 1),_^ ... (m —p + ^),,^ 

(v-l),-i^'',-i(«^ + l).-i ••• (v + w-l),_, * 
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35. Prove that 

Pi ••• Pr-X 

(« + !)”, (i)+l)„ (p + 1), ... + 

(»+2)“, (;j + 2)„, (j) + 2), ... (p + 2X_, 

(* + »•)”. (?> + »-)o, (i» + »-), (?> + rX_, 

vanishes if ti < r, but is equal to (— 1)" 71! if = r. If 71 > r the deter¬ 
minant reduces to a function of x of order n — r. 

36. Prove that 

a", p, ... 

(*+i)". (p+i), ••• (p+i), 

(a! + 2)“, (it) + 2), ... (p-¥2\ =(*-?>)“ 

(x+ r)“ (i> + r), ... (p+ r-X I 

for all positive values of 7z less than r. 

37. Prove that 

Po» Pi ••• P,-i ’i”’ =A’-7i"’. 

0>+i)o. (;>+i)i ••• (p + iX-i. (m + i)” 
(^>+2)0, (p + 2), ... (p + 2X.., (« + 2)” 

(P + ’')o. (^> + »’), ••• (p+(»+»•)” 

38. Prove that the value of the determinant 

(ni-p + l)(TO+l)„ (m+1)(ot+1),.„ (?+l)(m+l)„3, (< + l)(m+l),„... 

(TO-p+2)(TO+2)„(ra+2)(m.+2X^,, (g'+2)(m+2)„„ (« + 2)(m+2X^,... 

(TO-p+r)(»i+r)„ (re+rXm+r)„,, (9'+r)(ni+rX^„ (i+r)(m+rX„... 

is 
mp(77i+l)^...(77i + r)^ 

Pp(P+l)p-”(P+^), 
{rn-p) {m-p-¥\) {m-p+2)... {m-p-¥ 

and so is independent of the quantities t... 

39. If yt = I I; = I I are two determinants of order 77, and 

/(x)= I a„ + x5a I, 

prove that 
f(x)f{-x) = AB\H,,-K,x^\, 

where the quantities H^, K.^ satisfy the equations 
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40. With the same notation as in the preceding question, prove 

that if 
P(X, fi)=r I + I, 

then 

P(\,fi) = A + \ ... 
fi II^TI^ + X ... fx ZTj^ 

/xzr„i, ... /xi/’„„4.x 
= B XK^, + tx, \R\, ... X^,„ 

i ••• 

S. D. 15 
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Also, if to the elements of P we add the homologous elements of Q 

multiplied by y, the resulting determinant is equal to 

F{x)F(y) 

42. Prove the formula for the change of the independent variable 

in the determinant of n functions 

dx (PF C?£C"“^ 

~\dx) ^ ae dt'-' • 

43. Let Ox, CL^i ... be a series of wpositive numbei’s, and let .9^ be 

the sum of the divisors of r selected from the terms of this series, this 

sum being supposed to vanish for all values of r which have no divisors 

in the above series. Then if 

,S»-l+ s. . -S3 ... -«n-a 

.S.-s n — lf -Sa ... 

i«.-a+ «»-.> 0 , w- 2, ••• -««-4 

.».-4 + S.-3. 0 , 0 , 

C
O

 

1 -««-6 

0 3 0 , 0 ... 2 

the number of positive integral solutions of the equation 

is 

aj£Cj+ ... = n 

n! * 

44. If 8^ is the sum of all the divisors of r, then the determinant 

f h . «3 •• • ^n-3> «n-3 

^n-g~ ^n-1 f n- 1, «n-3 

^n-a~ ^n-gf 0 f w-2, Sj .. • «n-5» «„-4 

^n—4 ^n—3) 0 f 0 , n—Z.. ■ ^n—6 ^ ««-6 

0 f 0,0 .. • 3, 

0 1 0,0 .. . 0, 2 

is equal to (- 1)* w! when n is of the form J (3F± ^), but vanishes for 

other values of n. 
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45. Let (m, n) denote the greatest common divisor of the integral 

numbers m and n; and let if/ (m) be the number of numbers not sur¬ 

passing m and prime to m ; the symmetrical determinant 

is equal to 

(3) ..../'(»)• 

46. If .4 is a skew determinant of order n in which the principal 

diagonal elements are equal 'to and its system of first minors, 

prove that 

is equal to Aw„ if n is even, and to — w^, if n is odcL 

47. If / {x) = £c” + + ... + a, = 0 

has for its roots , prove that 

X, ... 

6,, X, b, ... b„ b^ /W = 

K-i, K-i, K-i i>. 
1, 1, 1 ...1, 1 

And if is the sum of the powers of the roots 

£C”, £C”"‘ ... X, 1 

5,, °n ) °n-i 

^n+l> 

■’2n-l> ‘'2n-3 

= (-i) ‘ i(p„b,...b,)f{x). 

Prove that 

tti’', ttj”-*.. •ap 1 
a^ a""^, .. a^, 1 

a/, 1 

Hp being the sum of the homogeneous powers and products of order p of 

a,, a„ ... a^. 

1 
49. If 

'•p ‘‘2 

1 
{x-a^^ 

prove that the value of the determinant of order 2n 

^iii an . • ^nl f «„1 

^12> O-ig .. •«n2» «n2 

®1.2») «1.2«* ••^n, 2„) 2n 

15—2 



228 THEOKY OF DETEKMINANTS. [EX. 

/ 1X, r (a,r {x,,x,...xj 

where <f> (x) = (x - x^) (x — Xg) ... (x — xj. 

50. Prove that the value of the determinant of order 2w + 1 whose 

2*** row is 

1, sina<, costti, sin2a<, cos 2a<... sin9ia<, cosna^, 
is 

2*”*nsin i(a^- a*), 

where i, h are all duads from 1, 2 ... 

Also that the value of the determinant of order whose row is 

sin cos sin 2a<, cos 2a<... sin , cos 
is 

2an»-*n+.nsinJ(«,-a*)A^, 

where /S'= S cos J(a, + + ... + ... - 

is formed by dividing the 2n angles into two sets of n in all possible 

ways and taking the cosine of half the difference of the sums of these 

sets. 

51. If 

prove that 

-a;, ’ a,-x. 

1 

a,-x, * ' 

1 1 

<^'2 •••«„) 

a —Xo 

, 1 

, 1 

a — X , 1 

where 4> (x) = {x — x^{x-x^ ... {x-x^^^. 

If B is the determinant obtained from A by writing {a^ - xy in 

place of (a^ —£c,), prove that 

A 

B 

1 
a, - X, 

a —Xo 

1 

, 1 

1 I 
1+1 j 
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the function on the right being formed like a determinant, with all 

the signs positive instead of alternating. 

52. If a, ^ ... X; a', ^' ... X' are two sets each of n quantities, 

and is the product of all the binomial coefficients in the expansion 

of (1 + cc)’’, prove the following equalities : 

(a-ay, {a-py ...{a-Xy 
(P-ay, (p-p'Y ...{p-xr = §^i(a, p...X.)^i(a',p’...\')I, 

where 

(X-^“ ...(X-X')’ 
1 

/= fa-a'. a-P'. .. a-X' 

J/8-a', p-p'. ..p-x 

U-«'. \-p' . .. X-X 

If 
u = {x-ay) {x-Py) .. 

v = {x-a'y){x-P'y).. 

I={\2yuv, 

using the notation of invariants. 

{x-\y), 

(x-X'y), 

(a - a'Y ... (a — X')", (a — £c)" 

(x-xy, (x-xy 
{x-x'y, 

,.{a-xy^\ (a-xy^^ 

= (a, /j ... X) ^ («', P'-• • V)uv, 

{K-ay*' (\-x)"*' 

{x-ay*' ... (x-X')"** 

where 

7 = a — a' .. . a-X', a-X 

p-a'.. -P-K P-x 

\-a' .. .X-X', X —£C 

..X — a.. . £C-X' 

xii(a',P' ...X)!.^, 

= -(12)-'«». 

Again, 

,(a-a')"...(a-X% 1 | = (-l)""'(7,0(a...X)^4(a'...V), 

(X-a')"...(X-X')', 1 

1 ... 1 
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(a-a7-...(a-Vr‘, 1 

1 
(x-xy^\ 1 

1 

r = a - a ... a - X', 11 

X-a'...X-X\ 1 
L 1 1 

(12)-^.^. 
' ' ax ax 

53. Let there be two systems of binary 7^-tics Wj ... v^...v^ 

where , 
= a,^ x" + n^a,,x^-\j + + • • • + a„i2/"» 

= h^x^-¥ nfi^^x^~\j + njb^fcP^if + ... + 

And let (i, k) be the lineo-linear invariant of u. and v*, so that 

(i, k) = aj)^- + w.a^i^n-o* -••.=«= a^iK 

(1,1) ... (1,^1+2) 1 = 0, 

{n +2, 1)... {ii + 2, w + 2) 

Prove that 

(1.1) • .. (l,» + l) = C' ®01> ^11 •• • a„i K,> ill ■■ ■ Ki 

(7^ + l, 1).. .. (w+ 1, W+ 1) ®0n+l>^ln+l • • • ®nn+l ^On+li ^ln+1 •' ’ ’ ^nn+l 

54. If ttj, a,... are the roots of the equation 

as" +y>,£c”"^ + ••• + Pn = 0, 

prove that 

K K Ti! ^1 ^2 ^n—1 
55. If “■ = -> — = —> 

*» 

35^ being a function of cc,, ajg... given by 

x^ + »/+ ... + + a;/ = 1, 

d(u,, 1 

a-2.xT^' 

prove that 
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56. If u^ = {x-¥y ■¥ zy ■¥ {x-y-zY x + y-zY {-x-y-^zy, 

prove that the Hessian of is 

^s-n ■\-y* + z*- 2£cy - ^t/z^ - 2;2:V)”"* 

multiplied by a numerical factor. 

57. If F=u^u^...u^, 

where ... are linear functions of the n variables jCj, ... £c„, 

prove that 

Also that 

dF dF 
dx^ dx. 

dF d^F d^F 
dxY dx^ ' dx^dx^ 

dF d^F iPF 
dx^ dx^dx^' ■■ 

= (- 
'd(u, 
d(x^ 

3)T •*.)J ■ 

58. If ttj, Wg, Wg be three functions of a;, ?/, and if 

d (m„ w,) .. __d(u„ u,) 

' d(^,y) ’ (l{x,y)’ » d{x,y)’ 

prove that 
2/) 

&c., 

t/;. 

59. If Wj, Wg, Wg, are four functions of cc, ?/, and if 

cfWg (2X c^X 
da^ ’ (iB" ’ dx^ 

d^u^ cfM3 d\ 

dxdy^ dxdy ’ dxdy 

d^u^ 

dy^ ’ d]Y 

and Vg, Vg, similar determinants formed from w,, &c., then 



62. If the function u of the variables ... be transformed by 

the linear substitution 

+ ^i22/a+ ••• + K^lVn-l 
to a function ® of w - 1 variables, prove that 

a{v) = - 0, B, ...B, 

-S,. “i. - “i, 
1 

-S.. •• 

where , and (- l)*^j is the determinant obtained by suppress- 

ing the row in the array formed by the quantities . 

63. If U— l^Qiy^x.Xj^ Jc— 2 ... 71^f 

and 

•0, = |«„ - «.J 

a„ ... a, 
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prove that the substitution 

1 dD, 1 dD 

reduces the given quadric to the sum of the n squares 

(r=l, 2... w). 

64. If u and v are two n-ary quadrics and IT, V their reciprocals, 

prove that we can by the same linear substitution change u into A V 

and V into £U; A and B are the discriminants of u and v. The 

determinant G of the substitution is the geometric mean between the 

discriminants of U and V. If G be regarded as the discriminant of a 

quadric W, we can by the same linear substitution reduce the three 

quadrics G, V, JF to the sum of squares. The coefficient of any term 

in W so transformed is the geometric mean between the homologous co¬ 

efficients in G and F. 

65. If to the leading elements of the determinant of an orthogonal 

substitution of order n we add the quantities a^, ... a^, or the 

quantities ^ > “ ’ *' ^ resulting determinants are equal if 

66. If Cj*are the coefficients of an orthogonal substitution (modulus 

imity) of order n, prove that 

i> = 

> ^na 1 

is equal to zero if w is odd; but if n is even its value is 

2’ 
U] 
T’ 

where A is the skew determinant from which the orthogonal substitution 

is derived, and [.4] the same determinant with the elements in the lead¬ 

ing diagonal zero. 
If is the coefficient of one of the leading terms in D, prove that 

when n is even 



234 THEOEY OF DETERMINANTS. M 

67. If |cj = ^ 

is the determinant of an orthogonal substitution, the equation 

c„, , c<v, + a; 

= 0 

^nl f ^n2 C. + X 

is a reciprocal one. If n is odd it has one real root - e; if w is even and 

€ = - 1 it has the two real roots ± 1. The rest are all imaginary. 

68. The maxima and minima values of 

u = :^a^^x^x^, 

subject to the conditions 

V = 'Zhij.xfc^ 

Cii®i + Cij*!+---+Ci.*,=0 

a:,+c,. 0 

are given by the equation 

b,,u-a,^v ... ^11 > c,, .. 

... h^u~a^v. Cl„, • •• ^n-Jn 

«ii Cl, 

^n-21 ••• ^n-2n 

69. The values oi x^y x^... x^ which satisfy the equations 

+ o„*,+ ... + a„,a;„=0 

and make x^ + x^ + ... + xj a minimum are 

=0 

= 1 

=0 

=0 

]^dG_ 2..^ 1 dG 
2G da J 20 da,^ 20 da J 

where 0 is the determinant whose elements are given by 
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70. The value of the integral 

jj...XiXjdx^dx^ ... dx^, 

taken for all values of the variables such that 

the quadric being a definite positive form (i.e. incapable of becoming 

negative), is 

(rj)" A, 
r(Jn + 2)3X*’ 

where .4 = | | is the discriminant of the quadric. 

71. The value of the integral 

^00 *00 

I ... €““cos + b^x^ + ... + b^xj dx^dx^... dx^, 
_ 00 •' -00 

where 
u='^a^x,x,, 

is 

where 

1 0, b„ b, ... b. 

Ky a«2 ••• ««„ 

In this question and the next u is supposed to be incapable of becoming 

negative. 

72. The value of the integral 

where 

IS 

'^dx^dx^... dx^ 

v = '^b^^XiX^y u=':^a^^x^x^y 

where S is the sum of the n determinants obtained by substituting for 

each column of A in succession the corresponding column of the dis¬ 

criminant of V. 
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73. Let ttj, a2*--®2n+i 2n+\ real and different numbers 
ascending order of magnitude, and let 

P {x)={x-a^{x-a^ ... (a;-a2„+x) 

Q {x) = {x-tta) {x-ay.. {x-aj A 

P(x)=P{x)Q{x)y 

A being a positive number. Then if 

K =1^“ T 1 Q Kr-i) -P (i«) 

(these are the complete Abelian integrals of the first and second species), 

and if also 

J-1 P(x)dx 7 _\/-l 0 («2r-i) P{x)dx, 
” 2 {x-a,^JJP{xy - 2 P'(a,,jJa^ {x--c^_,y ^R {x) 

... 4, 

^11 > ^11 ••• K\i • 

-^In ••• 

^In) ^In ••• ^nn7 Kr 

Prove also that 

dD dD 

dK,r dK _r \2) dL^, dL,,_r\2) 

\2) di- di^,_r\2) 

dP dP 

dh,. dh. 

74. Prove that the value of the continued fraction 

tt+1— 6 + 1— c+1 
ad. inf. 

is unity. 

75. Prove that the product of the two continued fractions 

(Z—1 + 
2 («-!)*+ 2{a-iy + 

+1 + 2(« + l)V 2 (a+!)"+*■ 

IS a. 
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76. If is the number of terms in a determinant of order n 

which do not contain any element from the principal diagonal, prove 

that 

land hence that ~ is the coefficient of in the expansion of - 
nl ^ l-x 

77. If u„ is the number of terms in a symmetrical determinant of 
order Uj prove that 

- nw„.i + Y 

Also that ^ is the coefficient of cc" in the expansion of 

78. If [1.3.5 ... {2n — 1)] is the number of terms in a skew 

determinant of order 2?i, prove that 

u„ = (2n — 1) — (n — 1) w„_2. 

Shew also that is the coefficient of af in the expansion of 

2A = 

79. If .4 is the area of a quadrilateral, the co-ordinates of whose 

angular points are (x^, ... (a;^, then 

0. y, ys-yi 
1, 0, 0^3, 2/3 2/.“2/2 

The area of a quadrilateral inscribed in a cii’cle in terms of its sides 

is given by 
16^ = - -a, h , c , d 

— a, c? , c 

c , d y "" Cty b 

dy C f b , — c 

80. If the planes 

ttiX + + c/j = 0 

touch the same sphere, then 

I K «i. A, «, 1 = 0 

(i = l,2, 3,4,5) 

where 
(i=l,2 ...5), 

u‘ = a‘ + b‘ + c 
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81. A quadric of revolution passes through five points 

The distances of these points from a focus being . 

If 7i = volume of tetrahedron P^ P^ P^ &c., prove that 

F,r, + F,n+...+ V^ = 0. 

82. Let F, F' be the volumes, B, G, D', a, h, c, d the areas of 

the faces of two tetrahedra whose angular points are numbered 1, 2, 3, 4. 

Also let Py, be the perpendicular from the point i of the first tetrahedron 

on the face opposite the point k of the second, and a like quantity for 

the other tetrahedron. Prove that 

I -Pa I X IA I =-jicDabcd (*> * = 1> 2, 3, 4). 

83. If A, By Gy D are the directions of four forces in equilibrium, 

and if AB is the moment of the lines A and P, &c., prove that 

0 , BAy GAy DA 

ABy 0 , GBy DB 

AG, BGy 0 , DG 

ADy BDy GDy 0 

= 0. 

If a, hy Cy d are the magnitudes of the forces 

a = J{BG .GD.DB)y &c. 

84. In Siebeck’s determinant, xiv. 22, prove that 

dd,^ 
= 288W, 

where v is the volume of the tetrahedron formed by the face opposite 

the point i of the first tetrahedron and the centre of the sphere circum¬ 

scribing the second tetrahedron, and similarly for v'. 

8h. If in a system of five points c?,* is the square of the line 

joining the i*’* and k^ points, and r is a sixth point of the system, prove 

that 

^rl ^r2 ^12f ^r2 ' ‘ ' ^r2^rh ^25> ^r2 ^ 

= 0. 

^rl^rS ^15 > + ^35 *" ^ro > ^r5 ^ 

^^rl + 1 , ^^r2+l ••• ^^.5+1 1 
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86. If in a system of seven straight lines, is the moment of the 

and lines, and r is an eighth line, prove that 

0. 

* * * ^^7 

87. Having given two tetrahedra whose angular points are 

marked 1, 2, 3, 4, let c?,.* denote the square of the distance between 

the point of the first and point of the second tetrahedron. Prove 

the following relations: 

(i) For two points P, Q the distances of P from the angular points 

of the first tetrahedron being a., of Q from those of the second 6^, and 

d=PQ\ 
= 0. d, 1, J... K 

1, 0, 1 .. . 1 

a,, 1, d,,.. dn 

0^4, 1, 

(ii) For the point P and a plane, being the distances of the 

vertices of the second tetrahedron from the plane, p the distance of P 

from the plane, 

0. P» 0, q, .. • ^4 

1, 0, 1 .. . 1 

1, 

1, Cf 41 . .. d^ 
(iii) For two planes, p,, being the perpendiculars from the angular 

points of the tetrahedra on them, the angle between the planes. 

Jcos<^, 0, q, ... • ^4 

0 , 0, 1 .. . 1 

Pi » 1, d,,.. . C?i4 

P4 » 1, C?41 ... • d^, 

= 0. 

88. For a system of six and a second system of five spheres, if 

p^^ is the power of the P" and spheres, 

1, p^^ ... ^15 I = 0. 

I5 Pei •••Pee 
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89. The equation 

0, = 0 s,, 0, ^12 > ^13, ^14 

^41 > ^42 > ^43 > 0 

represents two spheres touching the given spheres = 0 .., = 0; 

is the square of the common tangent to the and spheres. 

90. Prove that for any five spheres aS^^ = 0 ... aS^s = 0, 

0, 1, 1 .. • 1 . 1 

1, 0, ^12 .. S, 
1, ^21, 0 .. . ^251 iS, 

1, <33 •• .0, S, 
1, .S', .. ■ S,, 0 

91. The index of two points being defined as in xiv. 27, the 

index of two planes Z>, D’ is obtained by taking in the planes the points 
a6c, a!h'c’ and forming the determinant 

nm — 

1 

4a6c. a!Vc ^bb'i ^bc' 
^cVi -^ec- 

and the index of two lines y, y' by taking in the lines two points a6, cCh' 
and forming the determinant 

1 
^aan ^ab> 

^ba') -^bb’ ^ ab.aV 

Prove that for two groups of planes numbered 1 ... 5 

= 0, 

/. 

L, ... L 

4 ... Ibb I 
U (3F)’ (3Fy 

{obey 2ABGD • 2A’B:C’D' ’ 

where a, 6, c are now the semiaxes of the ellipsoid, F, F' the volumes, 

and A ... A' ... the faces of the tetrahedra formed by the planes. 
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Prove also that for two groups of lines passing through the 

points Py P 

I -4 1 = 0, 

... 

. sin (123)sin (1'2'3') ^ , 
Ai ••• ^13 = 

-^31 ••• •^33 

92. If between the points of two surfaces we establish the corre¬ 

spondence 

i=<jy{x, y, z), r,=<jr(x, y, z), ^ = x (», y, *), 

prove that the ratio of corresponding elements of the surfaces is 

given by 
da- _ ^ 
ds dx^ dy^ dz^ 

dt] dt] d-T] n 
d^^ 5^’ ^ 

^ ^ ^ 

dx* dy^ dz* ^ 

a , h y c 

where (a, 6, c), (a, y) are the dii*ection cosines of the normal to ds 

and da-. 

S. D. 16 
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